On Poreda's Problem on the Strong Unicity Constants

MARTIN W. BARTELT

Department of Mathematics, Christopher Newport College, Newport News, Virginia 23606

AND

DARRELL SCHMIDT

Department of Mathematical Sciences, Oakland University. Rochester, Michigan 48063

Communicated by Oved Shisha

Received August 3, 1979

1. INTRODUCTION

Let C(I) denote the space of continuous, real-valued functions on the interval I - [a, b] endowed with the uniform norm $\|\cdot\|$. Let Π_n denote the set of all algebraic polynomials of degree *n* or less, and let Π denote the set of all algebraic polynomials. For a given $f \in C(I)$, with best uniform approximation $T_n(f)$ from Π_n . Newman and Shapiro [10] showed that there is a constant $\gamma > 0$ such that

$$||f - p|| \ge ||f - T_n(f)|| + \gamma ||p - T_n(f)||$$
(1.1)

for all $p \in \Pi_n$. The largest such constant γ is written $\gamma_n(f)$ and is called the *strong unicity constant*. It is known that $0 < \gamma_n(f) \leq 1$ and that $\gamma_n(f) = 1$ for any function $f \in \Pi_n$. Let $M_n(f) = \gamma_n(f)^{-1}$. Properties of the sequence $\{M_n(f)\}_{n=0}^r$ have been studied in [7, 8, 11, 13]. In particular, in [11] Poreda asked:

For what functions f in C(I) is the sequence $\{M_n(f)\}_{n=0}^{\infty}$ bounded?

Let $B = \{f \in C(I): \{M_n(f)\}_{n=0}^{\vee} \text{ is bounded}\}$. Evidently, $\Pi \subseteq B$. Poreda [11] gave an example of a function $f \notin B$. Henry and Roulier [8] gave a wide class of functions which are not in B and conjectured that in fact $B = \Pi$.

Let $E_n(f) = \{x \in I: |f(x) - T_n(f)(x)| = \|f - T_n(f)\|\}$ be the set of extreme points of $f - T_n(f)$ and let $|E_n(f)|$ denote the cardinality of $E_n(f)$. Previous

work indicates that the properties of the sequence $\{M_n(f)\}_{n=0}^{n}$ depend on the distribution of $E_n(f)$ in I and on $|E_n(f)|$. In particular, Schmidt [13] showed that if $|E_n(f)| = n+2$ for infinitely many n, then $f \notin B$. This raised the question of whether in fact there exists a nonpolynomial function f in C(I) for which $|E_n(f)| > n+2$ for all but finitely many n. A negative answer to this question would solve Poreda's problem. In [13] it was also shown that if there is a nondegenerate interval $|c, d| \subseteq I$ for which $E_n(f) \cap |c, d| = \emptyset$ for infinitely many n, then $f \notin B$.

In Section 2 of this paper we demonstrate the existence of a nonpolynomial function f in C(I) such that $|E_n(f)| > n + 2$ for all n and show that B is of first category as is Π . In Section 3 we obtain an interpolatory lower estimate for $M_n(f)$ which is similar to an upper estimate for $M_n(f)$ given in [5]. This lower estimate will then be used in Section 4 to relax the condition $|E_n(f)| = n + 2$ for infinitely many n in Theorem 4 of [13]. In Section 5, two conditions based on the distribution of $E_n(f)$ in I which ensure that $f \notin B$ are given.

2. Nonuniqueness of Alternants

For $f \in C(I)$, let $e_n(f) = f - T_n(f)$. Then $E_n(f) = \{x \in I: |e_n(f)(x)| = \|e_n(f)\|\}$.

THEOREM 1. There is a nonpolynomial $f \in C(I)$ such that $|E_n(f)| > n+2$ for all n.

Proof. For convenience we assume that I = [-1, 1]. We show that there is an even function $f \in C(I)$ such that $0 \notin E_n(f)$ for n = 0, 1,.... That such a function satisfies the conclusion of Theorem 1 can be seen as follows. Let α be the smallest positive element of $E_n(f)$. The number α exists since $0 \notin E_n(f)$ and $E_n(f)$ is compact. Since $e_n(f)$ is even, $e_n(f)(-\alpha) = e_n(f)(\alpha)$ and $E_n(f)$ contains no points in the open interval $(-\alpha, \alpha)$. Thus an alternant for $e_n(f)$ cannot include both α and $-\alpha$, and we see that $|E_n(f)| \ge n + 3$.

We employ the Baire category theorem to demonstrate the existence of such a function. Let \mathcal{E} be the closed subspace of C(I) consisting of all even functions in C(I). For n = 0, 1, ..., let

$$A_n = \{ f \in \mathbb{X} : 0 \in E_n(f) \}.$$

To show that A_n is closed, let $\{f_k\}_{k=1}^{\times}$ be a sequence in A_n and $f \in \mathcal{I}$ such that $||f_k - f|| \to 0$ as $k \to \infty$. By the continuity of the operator T_n , $||e_n(f_k)|| \to ||e_n(f)||$ and $||e_n(f_k)|| = |e_n(f_k)(0)| \to ||e_n(f)(0)|$. Thus $|e_n(f)(0)| = ||e_n(f)||$ and $0 \in E_n(f)$. So $f \in A_n$, and A_n is closed.

We now show that A_n has an empty interior. Let $f \in A_n$. We consider two cases.

Suppose $e_n(f)(0) = 0$. Then $f \in \Pi_n$. Given $\varepsilon > 0$ select $h \in \mathscr{E}$ so that h(0) = 0, $h(i/(n+2)) = (-1)^i \varepsilon$, i = 1, ..., n+2, and h is linear on each of the intervals |(i-1)/(n+2), i/(n+2)|, i = 1, ..., n+2. Now extend h to be even on |-1, 1|. Then $h \in \mathscr{E}$, $T_n(h) = 0$, and $E_n(h) = \{\pm i/(n+2): i = 1, ..., n+2\}$. If g = f + h, then since $f \in \Pi_n$, $T_n(g) = f + T_n(h) = f$ and $e_n(g) = h$. As a result, $0 \notin E_n(g) = E_n(h)$, $g \notin A_n$, and $||g - f|| = ||h|| = \varepsilon$. Hence, f is not an interior point of A_n .

Suppose $e_n(f)(0) \neq 0$. Without loss of generality, assume $\tau = e_n(f)(0) > 0$. and let ε , $0 < \varepsilon < \tau/2$, be given. Since $e_n(f)$ is continuous at 0, there is a $\delta > 0$ such that $0 \leq \tau - e_n(f)(x) < \varepsilon$ for $|x| < \delta$. Define *h* on $\{0, \delta/2, \delta\}$ by $h(0) = -\varepsilon$, $h(\delta/2) = \tau - e_n(f)(\delta/2)$, and $h(\delta) = 0$. Now extend *h* continuously to [0, 1] so that $-\varepsilon \leq h(x) \leq \tau - e_n(f)(x)$ for $x \in [0, \delta]$, and h(x) = 0 for $x \in [\delta, 1]$. Finally, extend *h* to be even on [-1, 1]. Thus $h \in \mathscr{I}$ and $||h|| = \varepsilon$. If we set g = f + h, then for $x \in [-1, -\delta] \cup [\delta, 1]$.

$$|g(x) - T_n(f)(x)| = |e_n(f)(x)| \le \tau.$$

For $x \in [-\delta, \delta]$,

$$g(x) - T_n(f)(x) = e_n(f)(x) + h(x) \ge \tau - \varepsilon - \varepsilon > 0$$

and

$$g(x) - T_n(f)(x) = e_n(f)(x) + h(x) \le e(f)(x) + \tau - e_n(f)(x) = \tau.$$

Moreover, $g(\delta/2) - T_n(f)(\delta/2) = \tau$. Thus $||g - T_n(f)|| = \tau$. If we select an alternant for $e_n(f)$, then since $e_n(f) > 0$ on $|-\delta, \delta|$ at most one point in the alternant may lie in $|-\delta, \delta|$. Replacing this point by $\delta/2$, if necessary, we obtain an alternant for $g - T_n(f)$, and thus $T_n(g) = T_n(f)$. Since $g(0) - T_n(f)(0) = e_n(f)(0) - \varepsilon = \tau - \varepsilon$, $0 \notin E_n(g)$ and $g \notin A_n$. In addition, $||g - f|| = ||h|| = \varepsilon$. Hence, f is not in the interior of A_n , and so A_n has an empty interior. By the Baire category theorem, $\ell \neq \bigcup_{n=0}^{n} A_n$, and the proof of Theorem 1 is complete.

The proof of Theorem 1 shows the existence of a set of functions of second category in \checkmark for which Poreda's question remains unanswered. In contrast to this, we have:

THEOREM 2. B is of first category in C(I).

Proof. For L = 1, 2,..., let $B_L = \{f \in C(I): M_n(f) \leq L, n = 0, 1,...\}$. By Theorem 2 in [1], $M_n(f)$ is a lower semicontinuous function of f for each n, and B_L is closed. Let $f \in B_L$. For each n, select a polynomial g_n of exact

BARTELT AND SCHMIDT

degree n + 1 such that $||f - g_n|| \to 0$ as $n \to \infty$. By Theorem 2 in [7], $\lim_{n \to \infty} M_n(g_n) = \infty$, and thus every neighborhood of f contains a function not in B_L , B_L has an empty interior, and Theorem 2 is proven.

3. Interpolatory Estimates for $M_{\mu}(f)$

For fixed *n*, let $S_n = \{p \in \Pi_n : ||p|| = 1\}$. The following characterization of $\gamma_n(f)$ is due to Bartelt and McLaughlin (see [1] and Theorem 5 in [3]). If $f \in C(I) \setminus \Pi_n$, then

$$\gamma_n(f) = \min_{p \in S_n} \max_{x \in E_n(f)} |\operatorname{sgn} e_n(f)(x)| p(x).$$
(3.1)

Many of the analyses of the asymptotic behavior of $M_n(f)$ rely on an interpolatory characterization of $M_n(f)$ (see [7, 8, 13]). Let

$$x_0 < x_1 < \dots < x_{n+1}$$

be an alternant for $e_n(f)$. For j = 0,..., n + 1, let q_j be the unique polynomial in Π_n satisfying $q_j(x_i) = \operatorname{sgn} e_n(f)(x_i)$, i = 0,..., n + 1, $i \neq j$. Cline [4] has shown that

$$K_n = K_n(x_0, \dots, x_{n-1}) = \max_{0 \le i \le n+1} ||q_i||$$
(3.2)

is a suitable strong unicity constant, that is, $K_n \ge M_n(f)$. Henry and Roulier [8] proved that $K_n = M_n(f)$ if $|E_n(f)| = n + 2$. As a result, the analyses of [7, 8, 13] either impose the condition or conditions which imply $|E_n(f)| = n + 2$. Unfortunately, when $|E_n(f)| > n + 2$, we only have

$$M_n(f) \leqslant \min K_n, \tag{3.3}$$

where the minimum in (3.3) is taken over all alternants for $e_n(f)$. An example which appears in [2] shows that the inequality in (3.3) can be strict when $|E_n(f)| > n + 2$.

In this section, we obtain a lower estimate for $M_n(f)$ when $|E_n(f)| \ge n+2$ and $T_n(f) \ne T_{n+1}(f)$.

LEMMA 1. If $f \in C(I) \setminus \Pi_n$, then

$$M_{n}(f) = \max\{ \|p\|: p \in \Pi_{n}, \sigma(x) \ p(x) \leq 1 \ for \ x \in E_{n}(f) \}, \quad (3.4)$$

where $\sigma(x) = \operatorname{sgn} e_n(f)(x)$.

Proof. The assertion on p. 64 of Rice |12| (note the misprint: = should be \geq) implies that the maximum in (3.4) exists. Let $q \in \Pi_n$ satisfy

 $\sigma(x) q(x) \leq 1$ for $x \in E_n(f)$ and $||q|| = \max\{||p||: p \in \Pi_n, \sigma(x) p(x) \leq 1$ for $x \in E_n(f)\}$. Then q/||q|| has norm 1 and by (3.1)

$$M_n(f)^{-1} = \gamma_n(f) \leqslant \max_{x \in F_n(f)} \sigma(x) q(x) / ||q|| \leqslant 1/||q||$$

and thus $||q|| \leq M_n(f)$. By (3.1) again, select $p \in S_n$ such that $M_n(f)^{-1} = \gamma_n(f) = \max_{x \in E_n(f)} \sigma(x) p(x)$. Then $\sigma(x) p(x) M_n(f) \leq 1$ for $x \in E_n(f)$, and $M_n(f) = ||pM_n(f)|| \leq ||q||$. Hence, $||q|| = M_n(f)$, and Lemma 1 is proven.

Suppose that $T_n(f) \neq T_{n+1}(f)$. Then $e_n(f)$ can demonstrate no more than n+2 points of alternation in $E_n(f)$. We may decompose $E_n(f)$ into n+2 nonempty subsets

$$E^0, E^1, \dots, E^{n+1} \tag{3.5}$$

satisfying (i) E^i is compact, i = 0,..., n + 1, (ii) max $E^i < \min E^{i+1}$, i = 0,..., n, (iii) $\sigma(x) = \operatorname{sgn} e_n(f)(x)$ is constant over E^i , i = 0,..., n + 1, and (iv) $\operatorname{sgn} e_n(f)(x)|_{E^i} = -\operatorname{sgn} e_n(f)(x)|_{E^{i+1}}$, i = 0,..., n.

If $|E_n(f)| = n + 2$, then each E^i is a singleton, and the q_j in (3.2) are well defined. If $|E_n(f)| \ge n + 2$, we demonstrate the existence of analogous interpolating polynomials.

LEMMA 2. Suppose that $T_n(f) \neq T_{n+1}(f)$, E^i , i = 0,..., n + 1, are given by (3.5), and $\sigma(x)$ is defined in (iii) above. Then for j = 0,..., n + 1, there is a $q_{nj} \in \Pi_n$ and there are points $y_{nj}^i \in E^i$, i = 1,..., n + 1, $i \neq j$, such that $\sigma(x) q_{nj}(x) \leq 1$ for $x \in E_n(f)$ and $\sigma(y_{nj}^i) q_{nj}(y_{nj}^i) = 1$, i = 0,..., n + 1. $i \neq j$. Moreover, each q_{nj} is unique in the sense that q_{nj} is the only polynomial in Π_n such that $\sigma(x) q_{nj}(x) \leq 1$ for $x \in E_n(f)$ and $\sigma(x) q_{nj}(x) = 1$ for some $x \in E^i$, i = 0,..., n + 1, $i \neq j$.

Proof. In this proof we suppress the subscripts on q_{nj} and y_{nj}^i . This result depends not on f but on $E_n(f)$ and its decomposition (3.5).

We first consider the case in which $E_n(f)$ is finite and induct on $|E_n(f)|$. If $|E_n(f)| = n + 2$, then we can write $E^i = \{x_i\}$, i = 0, ..., n + 1. For fixed *j*, let $y^i = x_i$, i = 0, ..., n + 1, $i \neq j$, and let *q* be the polynomial in Π_n satisfying $q(x_i) = \sigma(x_i)$, i = 0, ..., n + 1, $i \neq j$. Then $\sigma(x_j) q(x_i) \leq 0$, for otherwise *q* would have n + 1 zeros. Thus the conclusion of Lemma 2 holds if $|E_n(f)| = n + 2$.

Assume that the conclusion of Lemma 2 holds whenever $|E_n(f)| = m \ge n + 2$. Let $|E_n(f)| = m + 1$, and fix j, $0 \le j \le n + 1$. If $|E^j| \ge 2$, delete one point z from E^j and apply the induction hypothesis to obtain $q \in \Pi_n$ and $y^i \in E^i$, i = 0, ..., n + 1, $i \ne j$, such that $\sigma(x) q(x) \le 1$ for $x \in E_n(f) \setminus \{z\}$ and $\sigma(y^i) q(y^i) = 1$, i = 0, ..., n + 1, $i \ne j$. As before, $\sigma(z) q(z) \le 0$, and the result holds. Suppose $|E^j| = 1$. Then for some k, $0 \le k \le n + 1$, $k \ne j$, $|E^k| \ge 2$. Delete one point z from E^k and apply the induction hypothesis to obtain

 $q \in \Pi_n$, $y^i \in E^i$, i = 0,..., n + 1, $i \neq k$, $i \neq j$, and $y^k \in E^k \setminus \{z\}$ such that $\sigma(x) q(x) \leq 1$ for $x \in E_n(f) \setminus \{z\}$ and $\sigma(y^i) q(y^i) = 1$, i = 0,..., n + 1, $i \neq j$. If $\sigma(z) q(z) \leq 1$, then the result holds. Now suppose that $\sigma(z) q(z) > 1$. Delete y^k from E^k and apply the induction hypothesis again to obtain $\bar{q} \in \Pi_n$, $\bar{y}^i \in E^i$, i = 0,..., n + 1, $i \neq k$, $i \neq j$, and $\bar{y}^k \in E^k \setminus \{y^k\}$ such that $\sigma(x) \bar{q}(x) \leq 1$ for $x \in E_n(f) \setminus \{y^k\}$ and $\sigma(\bar{y}^i) \bar{q}(\bar{y}^i) = 1$, i = 0,..., n + 1, $i \neq j$. We show that $\sigma(y^k) \bar{q}(y^k) \leq 1$. Suppose $\sigma(y^k) \bar{q}(y^k) > 1$. Then $\sigma(z) |q(z) - \bar{q}(z)| > 0$ and $\sigma(y^k) |q(y^k) - \bar{q}(y^k)| < 0$. Since $\sigma(z) = \sigma(y^k)$, $q - \bar{q}$ has a zero between z and y^k . Similarly, $q - \bar{q}$ has a zero between y^i and \bar{y}^i (possibly inclusive), i = 0,..., n + 1, $i \neq k$, $i \neq j$. Thus $q - \bar{q}$ has n + 1 zeros and must vanish identically. So $q = \bar{q}$ and $\sigma(y^k) \bar{q}(y^k) = \sigma(y^k) q(y^k) \leq 1$. Thus the conclusion of Lemma 2 holds for $|E_n(f)|$ finite.

Now suppose $|E_n(f)|$ is infinite.

Since each E^i is compact, we may select n+2 sequences $\{E_k^i\}_{k=1}^i$, i=0,..., n+1, of nonempty, finite sets such that $E_k^i \subseteq E^i$ and

$$d(E_k^i, E^i) = \sup_{y \in E^i} \inf_{x \in E_k^i} |x - y| \to 0$$

as $k \to \infty$, i = 0, ..., n + 1. Fix $j, 0 \le j \le n + 1$. For each k, we obtain $q_k \in \Pi_n$ and $y_k^i \in E_k^i$, i = 0, ..., n + 1, $i \ne j$, such that $\sigma(x) q_k(x) \le 1$ for $x \in E_k = \bigcup_{i=0}^{n-1} E_k^i$ and $\sigma(y_k^i) q_k(y_k^i) = 1$, i = 0, ..., n + 1, $i \ne j$. Since each E^i is compact, we may pass to a subsequence and relabel so that $y_k^i \rightarrow y^i \in E^i$ as $k \to \infty$, i = 0, ..., n + 1, $i \ne j$. By Lemma 3 in [9], the q_k are uniformly bounded, and thus another relabeling allows us to assume that $q_k \rightarrow q \in \Pi_n$ uniformly on I as $k \rightarrow \infty$. For $x \in E_n(f)$, say $x \in E^i$, we may find a sequence $\{x_k\}_{k=1}^i$, where each $x_k \in E_k^i$ and $x_k \rightarrow x$ as $k \rightarrow \infty$. Thus $\sigma(x) q(x) = \lim_{k \rightarrow \infty} \sigma(x_k) q(x_k) \le 1$. Also, $\sigma(y^i) q(y^i) = \lim_{k \rightarrow \infty} \sigma(y_k^i) \cdot q_k(y_k^i) = 1$, i = 0, ..., n + 1, $i \ne j$. Thus the existence of the q_{nj} and the y_{nj}^i is demonstrated. The proof of the uniqueness of the q_{nj} is the same as part of the induction step in the first case (that in showing $\overline{q} = q$), and we omit this detail.

THEOREM 3. Suppose that $f \in C(I) \setminus \Pi_n$ and that $T_n(f) \neq T_{n+1}(f)$. Let E^i , i = 0, ..., n + 1, be the decomposition of $E_n(f)$ given in (3.5), and let q_{nj} , j = 0, ..., n + 1, be the unique polynomials given in Lemma 2. Then

$$M_n(f) \ge \max_{0 \le i \le n+1} \|q_{nj}\|.$$

Proof. The lower estimate (3.6) follows directly from the inequality $\sigma(x) q_{ni}(x) \leq 1$ for $x \in E_n(f)$ and Lemma 1.

An example can easily be constructed for which the inequality in (3.6) is strict.

4. CONDITIONS ON $|E_n(f)|$

For $f \in C(I) \setminus \Pi$, let $\{n_k\}_{k=1}^{\infty}$ be the strictly increasing sequence of nonnegative integers whose range contains precisely those *n* for which $T_n(f) \neq T_{n+1}(f)$. For each *k*, let

$$E^0, E^1, \dots, E^{n_k + 1} \tag{4.1}$$

be the decomposition of $E_{n_k}(f)$ given by (3.5) with $n = n_k$.

THEOREM 4. Let $f \in C(I) \setminus \Pi$ and let $\{n_k\}_{k=1}^{\infty}$ be as described above. If for infinitely many k, at most two of the sets E^i , $i = 0, ..., n_k + 1$, contain more than one point, then $f \notin B$.

Proof. By relabeling we may assume that at most two of the E^i contain more than one point for all k = 1, 2,... For each $j, 0 \le j \le n_k + 1$, let the polynomials q_{kj} and the points y_{kj}^i , $i = 0,..., n_k + 1$, $i \ne j$, be as in Lemma 2. For convenience, let $y_{kj}^{-1} = a$ and $y_{kj}^{n+2} = b$. It is possible that $y_{kj}^{-1} = y_{kj}^0$ or $y_{kj}^{n+2} = y_{kj}^{n+1}$.

We first assert that, after extracting a subsequence and relabeling, for each k there exists j_k , $0 \le j_k \le n_k + 1$, and a polynomial $p_k \in \Pi_{n_k}$ such that $|p_k(y_{kj_k}^i)| \le 1$, $i = 0, ..., n_k + 1$, $i \ne j_k$, and

$$\lim_{k \to \infty} \max_{x \in J_k} |p_k(x)| = \infty, \tag{4.2}$$

where $J_k = [y_{kj_k}^{j_k-1}, y_{kj_k}^{j_k+1}].$

For each k, let μ_k and ν_k be such that $|E^{\mu_k}| \ge 1$ and $|E^{\nu_k}| \ge 1$ and $|E^i| = 1$, $i = 0,..., n_k + 1$, $i \ne \mu_k$, $i \ne \nu_k$. For fixed k, we can find a polynomial $P_k \in \Pi_{n_k}$ such that $|P_k(y_{k\mu_k}^i)| = 1$, $i = 0,..., n_k + 1$, $i \ne \mu_k$, and

$$||P_k|| \ge \frac{2}{\pi} \log(n_k - 1) - c,$$
 (4.3)

where c is an absolute constant. The polynomial P_k is obtained by removing absolute value signs and inserting appropriate factors in the terms of the Lebesgue function corresponding to the nodes $y_{k\mu_k}^i$, $i = 0, ..., n_k + 1$, $i \neq \mu_k$. Inequality (4.3) then follows from the results of Erdös [6]. Thus $\lim_{k \to \infty} ||P_k|| = \infty$.

If $\max\{|P_k(x)|: x \in E^{\mu_k}\}\$ is unbounded, we related further so that $\lim_{k \to r} \max\{|P_k(x)|: x \in E^{\mu_k}\} = \infty$. In this case, we let $j_k = \mu_k$ and $p_k = P_k$.

Suppose that $\max\{|P_k(x)|: x \in E^{u_k}\} \leq A$ for all k where $A \geq 1$. If $\max\{|P_k(x)|: x \in E^{r_k}\}$ is unbounded, then a relabeling allows us to assume that $\lim_{k\to\infty} \max\{|P_k(x)|: x \in E^{r_k}\} = \infty$. Since $y_{kr_k}^i = y_{ku_k}^i$ for $i \neq v_k$ and $i \neq \mu_k$, we see that $|P_k(y_{kr_k}^i)| \leq A$ for $i = 0, ..., n_k + 1$, $i \neq v_k$. In this case, we let $j_k = v_k$ and $p_k = P_k/A$.

Finally suppose that $|P_k(x)| \leq B$ for all $x \in E_{n_k}(f)$ and k = 1, 2,..., where $B \geq 1$. For each k, select $x_k \in I$ such that $|P_k(x_k)| = ||P_k||$. Since $y_{kj}^{j+1} \in E^{j+1}$ and $y_{k(j+1)}^j \in E^j$, $y_{k(j+1)}^j < y_{kj}^{j+1}$ for $j = 0,..., n_k + 1$ and so

$$I = \bigcup_{j=0}^{n+1} \ [y_{kj}^{j+1}, y_{kj}^{j+1}].$$

In this case, we select j_k so that $x_k \in [y_{kj_k}^{j_k-1}, y_{kj_k}^{j_k+1}]$ and let $p_k = P_k/B$. The first assertion is now established.

Assume now that, after relabeling, j_k and $p_k \in \Pi_{n_k}$ have been chosen for each k so that (4.2) and that above (4.2) hold. For $i = 0, ..., n_k + 1$, $i \neq j_k$, let l_{ki} be the polynomial in Π_{n_k} such that $l_{ki}(y_{kj_k}^i) = 1$ and $l_{ki}(y_{kj_k}^j) = 0$, j = 0, ..., $n_k + 1$, $j \neq i$, $j \neq j_k$. For $i = 0, ..., n_k + 1$, $i \neq j_k$, the polynomials $\sigma(y_{kj_k}^i) l_{ki}(x)$ have the same sign on the interval $int(J_k)$. Now select $x_k \in J_k$ such that $|p_k(x_k)| = \max_{x \in J_k} |p_k(x)|$. Then using the Lagrange interpolation formula, we have

$$|p_{k}(x_{k})| = \left| \sum_{\substack{i=0\\i\neq j_{k}}}^{n_{k}+1} p_{k}(y_{kj_{k}}^{i}) l_{ki}(x_{k}) \right| \leq \sum_{\substack{i=0\\i\neq j_{k}}}^{n_{k}+1} |l_{ki}(x_{k})|$$
$$= \left| \sum_{\substack{i=0\\i\neq j_{k}}}^{n_{k}+1} \sigma(y_{kj_{k}}^{i}) l^{ki}(x_{k}) \right| = |q_{kj_{k}}(x_{k})| \leq M_{n_{k}}(f)$$

by Theorem 3. It now follows that $\lim_{k\to\infty} M_{n_k}(f) = \infty$ and $f \notin B$.

The following corollary is a special case of Theorem 4 with more concrete conditions and follows at once.

COROLLARY 1. Let $f \in C(I) \setminus \Pi$. If $|E_n(f)| \leq n + 4$ for infinitely many n. then $f \notin B$.

Corollary 1 extends Theorem 4 in [13] and now reduces the resolution of Poreda's problem to considering those $f \in C(I)$ such that $|E_n(f)| > n + 4$ for all but finitely many n.

In [13] it was observed that if $f^{(n+1)} \neq 0$ in the open interval (a, b) for infinitely many n, then $f \notin B$ because such a function satisfies $|E_n(f)| = n + 2$.

COROLLARY 2. Let $f \in C(I) \cap C^{\infty}(a, b)$. If $f^{(n)}$ vanishes at most five times in (a, b) for infinitely many n, then $f \notin B$.

Proof. Let *n* be such that $f^{(n+1)}$ vanishes at most five times in (a, b). Let *m* be the largest nonnegative integer such that $T_m(f) = T_n(f)$. Then $T_m(f) \neq$

 $T_{m+1}(f)$ and let $E^0,..., E^{m+1}$ be the decomposition of $E_m(f)$ given by (3.5). We show that at most two of the sets E^i , i = 0,..., m + 1, contain more than one point. If $E^i = \{x\}$, then $e_m(f)'(x) = 0$ unless x is a or b. If $\{x, y\} \subseteq E^i$, then $e_m(f)'(x) = e_m(f)'(y) = 0$ and $e_m(f)'(z) = 0$ for some z between x and y unless x or y is a or b. If more than two of the sets E^i contain more than one point, then $e_m(f)'$ must have at least m + 6 zeros in (a, b). By Rolle's Theorem $f^{(n+1)} = e_m(f)^{(n+1)}$ must have at least m + 6 - n zeros in (a, b). Since $m \ge n$, $f^{(n+1)}$ would have at least six zeros in (a, b) which is a contradiction.

5. Conditions on the Distribution of $E_n(f)$

For convenience in this section, let $I = [0, \pi]$, $P_n = \text{span} \{1, \cos x, ..., \cos nx\}$, and $P = \bigcup_{n=0}^{\infty} P_n$. Let $f \in C[0, \pi] \setminus P$. Since $f \notin P$, there is a strictly increasing sequence $\{n_k\}_{k=1}^{\infty}$ of nonnegative integers whose range consists precisely of those *n* for which $T_n(f) \neq T_{n+1}(f)$. Here $T_n(f)$ denotes the best uniform approximation to *f* from P_n . As in (3.5) we decompose $E_{n_k}(f) = \{x \in [0, \pi] : |e_{n_k}(f)(x)| = ||e_{n_k}(f)||\}$, where $e_{n_k}(f) = f - T_{n_k}(f)$ into the subsets $E^0, E^1, ..., E^{n_k+1}$. In order to describe the distribution of $E_{n_k}(f)$ in $[0, \pi]$, let $\alpha_i = \min E^i$, $\beta_i = \max E^i$, $i = 0, ..., n_k + 1$, and let

$$\Delta_{n_{i}} = \max\{\beta_{i} - \alpha_{i}: i = 0, ..., n_{k} + 1\}$$

and

$$\delta_{n_k} = \max\{\alpha_1; \pi - \beta_{n_k}; \alpha_{i+1} - \beta_{i-1}, i = 1, ..., n_k\}.$$

Then Δ_{n_k} is the largest diameter of the sets E^i , and δ_{n_k} is the diameter of the largest interval in $[0, \pi]$ which contains one E^i but no other points in $E_n(f)$. Observe that $\Delta_{n_k} < \delta_{n_k}$. We establish conditions on Δ_{n_k} and δ_{n_k} which ensure that $f \notin B$.

THEOREM 5. If $\liminf_{k\to\infty} n_k \Delta_{n_k} = 0$, then $f \notin B$.

Proof. Let $S_k = \{ p \in P_{n_k} : ||p|| = 1 \}$. Then by (3.1) applied to trigonometric polynomials,

$$\gamma_{n_k}(f) = \min_{p \in S_k} \max_{x \in E_{n_k}(f)} \left| \operatorname{sgn} e_{n_k}(f)(x) \right| \, p(x).$$
(5.1)

By a remark of Henry and Roulier [8]

$$K_{n_k}^{-1} = \min_{p \in S_k} \max_{0 \le i \le n_k + 1} |\operatorname{sgn} e_{n_k}(f)(\alpha_i)| \ p(\alpha_i).$$
(5.2)

where $K_{n_k} = K_{n_k}(\alpha_0, ..., \alpha_{n_k+1})$ is given by (3.2) using trigonometric polynomials. Select $q \in S_k$ such that

$$K_{n_{k}}^{-1} = \max_{0 \le i \le n_{k}+1} |\operatorname{sgn} e_{n_{k}}(f)(\alpha_{i})| q(\alpha_{i})$$

and select $y \in E_{n_i}(f)$ such that

$$|\operatorname{sgn} e_{n_k}(f)(y)| q(y) = \max_{x \in E_{n_k}(f)} |\operatorname{sgn} e_{n_k}(f)(x)| q(x).$$

Now select j such that $y \in E^{j}$. Then sgn $e_{n_{i}}(f)(y) = \text{sgn } e_{n_{i}}(f)(\alpha_{j})$ and

$$|\operatorname{sgn} e_{n_k}(f)(y)| q(y) - |\operatorname{sgn} e_{n_k}(f)(\alpha_j)| q(\alpha_j) = |q(y) - q(\alpha_j)| = |q'(\xi)| |y - \alpha_j| \leqslant n_k \Delta_{n_k}$$
(5.3)

for some ξ between α_j and y, where the last inequality follows from Bernstein's inequality [4, p. 91]. Thus by (5.1), (5.2), and (5.3)

$$\gamma_{n_k}(f) \leq \max_{x \in E_{n_k}(f)} |\operatorname{sgn} e_{n_k}(f)(x)| q(x) = |\operatorname{sgn} e_{n_k}(f)(y)| q(y)$$
$$\leq |\operatorname{sgn} e_{n_k}(f)(\alpha_j)| q(\alpha_j) + n_k \Delta_{n_k}$$
$$= K_{n_k}^{-1} + n_k \Delta_{n_k}.$$

By Theorem 2 in [13], $K_{n_k}^{-1} \to 0$ as $k \to \infty$, and by hypothesis $n_r \Delta_{n_r} \to 0$ as $r \to \infty$ for a subsequence $\{n_r\}$ of $\{n_k\}$. Thus $\gamma_{n_r}(f) \to 0$ as $r \to \infty$, $\{M_n(f)\}_{n=0}^{\infty}$ is unbounded, and $f \notin B$.

THEOREM 6. If $\limsup_{k \to J} n_k \delta_{n_k} = \infty$, then $f \notin B$.

Proof. Assume without loss of generality that $\lim_{k \to \infty} n_k \delta_{n_k} = \infty$. The proof is given for $\delta_{n_k} = a_{j+1} - \beta_{j-1}$ since the case $\delta_{n_k} = a_1$ and $\delta_{n_k} = \pi - \beta_{n_k}$ are similar. Let $c = (\beta_{j-1} + a_{j-1})/2$. Define $h \in C[0, \pi]$ by $h(0) = h(\beta_{j-1}) = h(a_{j+1}) = h(\pi) = 0$, $h(c) = -\operatorname{sgn} e_{n_k}(f)|_{E^j}$, and linear in between these points. Then h satisfies a Lipschitz condition with constant $\lambda = 2\delta_{n_k}^{-1}$. By Jackson's Theorem [4, p. 143] there is a polynomial $p \in P_{n_k}$ such that $||h - p|| \leq \pi\lambda/2(n_k + 1) = \pi/(n_k + 1) \delta_{n_k}$. If $\tau_k = \pi/(n_k + 1) \delta_{n_k}$, then $\lim_{k \to \infty} \tau_k = 0$. For k sufficiently large, $||p|| \geq ||h|| - \tau_k = 1 - \tau_k > 0$. For $x \in E_{n_k}(f) \setminus E^j$.

$$|\operatorname{sgn} e_{n_k}(f)(x)| |p(x) \leq |p(x)| = |h(x) - p(x)| \leq \tau_k.$$

Since sgn $h(x) = -\text{sgn } e_n(f)(x)$, for $x \in E^i \subseteq (\beta_{i-1}, \alpha_{i+1})$ we have

$$|\operatorname{sgn} e_n(f)(x)| \ p(x) \leq |\operatorname{sgn} e_n(f)(x)| (p(x) - h(x))|$$
$$\leq |p(x) - h(x)| \leq \tau_k.$$

By (5.1)

$$\gamma_{n_k}(f) \leq \max_{x \in E_{n_k}(f)} |\operatorname{sgn} e_n(f)(x)| p(x)/||p||$$
$$\leq \tau_k/||p|| \leq \tau_k/(1-\tau_k).$$

Thus $M_{n_k}(f) \ge (1 - \tau_k)/\tau_k$ which tends to ∞ as $k \to \infty$, and $f \notin B$.

ACKNOWLEDGMENT

The authors appreciate the numerous suggestions of the referee which made this paper more readable.

References

- M. W. BARTELT, On Lipschitz conditions, strong unicity and a theorem of A. K. Cline, J. Approx. Theory 14 (1975), 245-250.
- 2. M. W. BARTELT AND M. S. HENRY, Continuity of the strong unicity constant on C(X) for changing X, J. Approx. Theory 28 (1980), 87–95.
- 3. M. W. BARTELT AND H. W. MCLAUGHLIN, Characterizations of strong unicity in approximation theory, J. Approx. Theory 9 (1973), 255-266.
- 4. E. W. CHENEY, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
- 5. A. K. CLINE, Lipschitz conditions on uniform approximation operators, J. Approx. Theory 8 (1973), 160-172.
- 6. P. ERDÖS, Problems and results on the theory of interpolation 11, Acta Math. Acad. Sci. Hungar. 12 (1961), 235-244.
- 7. M. S. HENRY AND L. R. HUFF. On the behavior of the strong unicity constant for changing dimension, J. Approx. Theory 27 (1979), 278-290.
- 8. M. S. HENRY AND J. A. ROULIER, Lipschitz and strong unicity constants for changing dimension, J. Approx. Theory 22 (1978). 85-94.
- 9. M. S. HENRY AND D. SCHMIDT, Continuity theorems for the product approximation operator, *in* "Theory of Approximation with Application" (A. G. Law and B. N. Sahney, Eds.), pp. 24–42, Academic Press, New York, 1976.
- D. J. NEWMAN AND H. S. SHAPIRO, Some theorems on Čebyšev approximation, Duke Math. J. 30 (1963), 673-681.
- 11. S. J. POREDA, Counterexamples in best approximation. Proc. Amer. Math. Soc. 56 (1976), 167-171.
- 12. J. R. RICE, "The Approximation of Functions," Vol. 1, Addison-Wesley, Reading, Mass., 1965.
- 13. D. SCHMIDT, On an unboundedness conjecture for strong unicity constants, J. Approx. Theory 24 (1978), 216–223.