On Poreda's Problem on the Strong Unicity Constants

Martin W. Bartelt
Department of Mathematics, Christopher Newport College. Newport New's, Virginia 23606
AND
Darrell Schmidt
Department of Mathematical Sciences, Oakland University. Rochester. Michigan 48063
Communicated by Oved Shisha
Received August 3, 1979

1. Introduction

Let $C(I)$ denote the space of continuous. real-valued functions on the interval $I-|a . b|$ endowed with the uniform norm $|\cdot| \mid$. Let Π_{n} denote the set of all algebraic polynomials of degree n or less, and let Π denote the set of all algebraic polynomials. For a given $f \in C(I)$. with best uniform approximation $T_{n}(f)$ from Π_{n}. Newman and Shapiro $|10|$ showed that there is a constant $\gamma>0$ such that

$$
\begin{equation*}
\left|\left\|f-p\left|\geqslant\left|i f-T_{n}(f)\right|+\gamma^{\prime} \| p-T_{n}(f)\right|\right.\right. \tag{1.1}
\end{equation*}
$$

for all $p \in \Pi_{n}$. The largest such constant $;$ is written $;_{n}(f)$ and is called the strong unicity constant. It is known that $0<\gamma_{n}^{\prime}(f) \leqslant 1$ and that $i^{\prime}(f)=1$ for any function $f \in I_{n}$. Let $M_{n}(f)=\because_{n}(f)^{\prime}$. Properties of the sequence $\left\{M_{n}(f)\right\}_{n}$ "have been studied in $|7,8,11,13|$. In particular, in $|11|$ Poreda asked:

For what functions f^{\prime} in $C(I)$ is the sequence $\left\{M_{n}(f)\right\}_{n}^{*}$, bounded?
I.et $B=\left\{f \in C(I):\left\{M_{n}(f)\right\}_{n}^{\prime}\right.$ "is bounded $\}$. Evidently, $\Pi \subseteq B$. Poreda $|11|$ gave an example of a function $f \notin B$. Henry and Roulier $|8|$ gave a wide class of functions which are not in B and conjectured that in fact $B=\Pi$.

Let $E_{n}(f)=\left\{x \in I:\left|f(x)-T_{n}(f)(x)\right|=\left\|f-T_{n}(f)\right\|\right\}$ be the set of extreme points of $f-T_{n}(f)$ and let $\left|E_{n}(f)\right|$ denote the cardinality of $E_{n}(f)$. Previous
work indicates that the properties of the sequence $\left\{M_{n}(f)\right\}_{n, "}$, depend on the distribution of $E_{n}(f)$ in I and on $\left|E_{n}(f)\right|$. In particular, Schmidt $|13|$ showed that if $\left|E_{n}(f)\right|=n+2$ for infinitely many n, then $f \notin B$. This raised the question of whether in fact there exists a nonpolynomial function f in $C(I)$ for which $\left|E_{n}(f)\right|>n+2$ for all but finitely many n. A negative answer to this question would solve Poreda's problem. In $|13|$ it was also shown that if there is a nondegenerate interval $|c, d| \subseteq I$ for which $E_{n}(f) \cap|c, d|=\varnothing$ for infinitely many n, then $f \notin B$.

In Section 2 of this paper we demonstrate the existence of a nonpolynomial function f in $C(I)$ such that $\left|E_{n}(f)\right|>n+2$ for all n and show that B is of first category as is Π. In Section 3 we obtain an interpolatory lower estimate for $M_{n}(f)$ which is similar to an upper estimate for $M_{n}(f)$ given in $|5|$. This lower estimate will then be used in Section 4 to relax the condition $\left|E_{n}(f)\right|=n+2$ for infinitely many n in Theorem 4 of $|13|$. In Section 5, two conditions based on the distribution of $E_{n}(f)$ in I which ensure that $f \notin B$ are given.

2. Nonuniqueness of Alternants

For $f \in C(I)$. let $e_{n}(f)=f-T_{n}(f)$. Then $E_{n}(f)=\left\{x \in I ;\left|e_{n}(f)(x)\right|=\right.$ $\left\|e_{n}(f)\right\|_{\}}$.

TheOrem 1. There is a nonpolynomial $f \in C(I)$ such that $E_{n}(f) \mid>$ $n+2$ for all n.

Proof. For convenience we assume that $I=|-1,1|$. We show that there is an even function $f \in C(I)$ such that $0 \notin E_{n}(f)$ for $n=0,1 \ldots$. . That such a function satisfies the conclusion of Theorem 1 can be seen as follows. Let \notin be the smallest positive element of $E_{n}(f)$. The number a exists since $0 \notin E_{n}(f)$ and $E_{n}(f)$ is compact. Since $e_{n}(f)$ is even, $e_{n}(f)(-\alpha)=e_{n}(f)(\alpha)$ and $E_{n}(f)$ contains no points in the open interval $(-\alpha, \alpha)$. Thus an alternant for $e_{n}(f)$ cannot include both α and $-\alpha$, and we see that $\left|E_{n}(f)\right| \geqslant n+3$.

We employ the Baire category theorem to demonstrate the existence of such a function. Let \nless be the closed subspace of $C(I)$ consisting of all even functions in $C(I)$. For $n=0.1 \ldots$. . let

$$
A_{n}=\left\{f \in X: 0 \in E_{n}(f)\right\} .
$$

To show that A_{n} is closed, let $\left\{f_{k}\right\}_{k}^{*}$, be a sequence in A_{n} and $f \in x$ such that $\left\|f_{k}-f\right\| \rightarrow 0$ as $k \rightarrow \infty$. By the continuity of the operator $T_{n},\left\|e_{n}\left(f_{k}\right)\right\|$, $\left\|e_{n}(f)\right\|$ and $\left\|e_{n}\left(f_{k}\right)\right\|=\left|e_{n}\left(f_{k}\right)(0)\right| \rightarrow \mid e_{n}(f)(0)!$. Thus $\left|e_{n}(f)(0)\right|=\left\|e_{n}\left(f^{\prime}\right)\right\|$ and $0 \in E_{n}(f)$. So $f \in A_{n}$, and A_{n} is closed.

We now show that A_{n} has an empty interior. Let $f \in A_{n}$. We consider two cases.

Suppose $e_{n}(f)(0)=0$. Then $f \in \Pi_{n}$. Given $\varepsilon>0$ select $h \in \epsilon$ so that $h(0)=0, h(i /(n+2))=(-1)^{i} \varepsilon . i=1 \ldots ., n+2$. and h is linear on each of the intervals $|(i-1) /(n+2), i /(n+2)|, i=1, \ldots, n+2$. Now extend h to be even on $|-1,1|$. Then $h \in \neq T_{n}(h)=0$, and $E_{n}(h)=\{ \pm i /(n+2): i=1 \ldots . . n+2\}$. If $g=f+h$, then since $f \in \Pi_{n}, T_{n}(g)=f+T_{n}(h)=f$ and $e_{n}(g)=h$. As a result. $0 \notin E_{n}(g)=E_{n}(h) . g \notin A_{n}$. and $\|g-f\|=\|h\|=\varepsilon$. Hence, f is not an interior point of A_{n}.

Suppose $e_{n}(f)(0) \neq 0$. Without loss of generality, assume $\tau=e_{n}(f)(0)>0$. and let $\varepsilon, 0<\varepsilon<\tau / 2$, be given. Since $e_{n}(f)$ is continuous at 0 , there is a $\delta>0$ such that $0 \leqslant t-e_{n}(f)(x)<\varepsilon$ for $|x|<\delta$. Define h on $\{0 . \delta / 2, \delta\}$ by $h(0)=-\varepsilon, \quad h(\delta / 2)=t-e_{n}(f)(\delta / 2), \quad$ and $\quad h(\delta)=0$. Now extend h continuously to $|0,1|$ so that $-\varepsilon \leqslant h(x) \leqslant \tau-e_{n}(f)(x)$ for $x \in|0, \delta|$, and $h(x)=0$ for $x \in|\delta, 1|$. Finally, extend h to be even on $|-1.1|$. Thus $h \in$, and $\|h\|=\varepsilon$. If we set $g=f+h$, then for $x \in|-1 .-\delta| \cup|\delta .1|$.

$$
\left|g(x)-T_{n}(f)(x)\right|=\left|e_{n}(f)(x)\right| \leqslant \tau
$$

For $x \in|-\delta, \delta|$,

$$
g(x)-T_{n}(f)(x)=e_{n}(f)(x)+h(x) \geqslant \tau-\varepsilon-\varepsilon>0
$$

and

$$
g(x)-T_{n}(f)(x)=e_{n}(f)(x)+h(x) \leqslant e(f)(x)+\tau-e_{n}(f)(x)=\tau
$$

Moreover. $g(\delta / 2)-T_{n}(f)(\delta / 2)=\tau$. Thus $\left\|g-T_{n}(f)\right\|=\tau$. If we select an alternant for $e_{n}(f)$, then since $e_{n}(f)>0$ on $|-\delta, \delta|$ at most one point in the alternant may lie in $|-\delta . \delta|$. Replacing this point by $\delta / 2$. if necessary, we obtain an alternant for $g-T_{n}(f)$, and thus $T_{n}(g)=T_{n}(f)$. Since $g(0)-$ $T_{n}(f)(0)=e_{n}(f)(0)-\varepsilon=\tau-\varepsilon, \quad 0 \notin E_{n}(g) \quad$ and $\quad g \notin A_{n}$. In addition, $\mid g-f\|=\| h \|=\varepsilon$. Hence, f is not in the interior of A_{n}, and so A_{n} has an empty interior. By the Baire category theorem, $t^{\prime} \neq \bigcup_{n}{ }_{n} A_{n}$, and the proof of Theorem 1 is complete.

The proof of Theorem I shows the existence of a set of functions of second category in r^{t} for which Poreda's question remains unanswered. In contrast to this, we have:

Theorem 2. B is of first category in $C(I)$.
Proof. For $L=1,2, \ldots$, let $B_{L}=\left\{f \in C(I): M_{n}(f) \leqslant L . n=0,1, \ldots\right\}$. By Theorem 2 in $|1|, M_{n}(f)$ is a lower semicontinuous function of f for each n, and B_{l} is closed. Let $f \in B_{l}$. For each n, select a polynomial g_{n} of exact
degree $n+1$ such that $\left\|f-g_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. By Theorem 2 in $|7|$. $\lim _{n \rightarrow,} M_{n}\left(g_{n}\right)=\infty$, and thus every neighborhood of f contains a function not in $B_{l,} . B_{l}$ has an empty interior, and Theorem 2 is proven.

3. Interpolatory Estimates for $M_{n}\left(f^{\prime}\right)$

For fixed n. let $S_{n}=\left\{p \in I_{n}:\|p\|=1\right\}$. The following characterization of $\because(f)$ is due to Bartelt and McLaughlin (see $|1|$ and Theorem 5 in $|3|$). If $f \in C(I) \backslash \Pi_{n}$, then

$$
\begin{equation*}
\gamma_{n}(f)=\min _{p \in S_{n}} \max _{x \in E_{n}(f)}\left|\operatorname{sgn} e_{n}(f)(x)\right| p(x) . \tag{3.1}
\end{equation*}
$$

Many of the analyses of the asymptotic behavior of $M_{n}(f)$ rely on an interpolatory characterization of $M_{n}(f)$ (see |7,8,13|). Let

$$
x_{0}<x_{1}<\cdots<x_{n-1}
$$

be an alternant for $e_{n}(f)$. For $j=0, \ldots ., n+1$, let q_{j} be the unique polynomial in Π_{n} satisfying $q_{j}\left(x_{i}\right)=\operatorname{sgn} e_{n}(f)\left(x_{i}\right), i=0, \ldots . n+1, i \neq j$. Cline $|4|$ has shown that

$$
\begin{equation*}
K_{n}=K_{n}\left(x_{0}, \ldots, x_{n, 1}\right)=\max _{\|, j \leqslant n+1} \| q_{i} \mid \tag{3.2}
\end{equation*}
$$

is a suitable strong unicity constant. that is, $K_{n} \geqslant M_{n}(f)$. Henry and Roulier $|8|$ proved that $K_{n}=M_{n}(f)$ if $\left|E_{n}(f)\right|=n+2$. As a result, the analyses of |7.8.13| either impose the condition or conditions which imply $\left|E_{n}(f)\right|=n+2$. Unfortunately, when $\left|E_{n}(f)\right|>n+2$. we only have

$$
\begin{equation*}
M_{n}(f) \leqslant \min K_{n}, \tag{3.3}
\end{equation*}
$$

where the minimum in (3.3) is taken over all alternants for $e_{n}(f)$. An example which appears in $|2|$ shows that the inequality in (3.3) can be strict when $\left|E_{n}(f)\right|>n+2$.

In this section, we obtain a lower estimate for $M_{n}(f)$ when $E_{n}(f) \mid \geqslant n+2$ and $T_{n}(f) \neq T_{n+1}(f)$.

Lemma 1. If $f \in C(I) \backslash \Pi_{n}$, then

$$
\begin{equation*}
M_{n}(f)=\max \left\{\|p\|: p \in \Pi_{n}, \sigma(x) p(x) \leqslant 1 \text { for } x \in E_{n}(f)\right\} . \tag{3.4}
\end{equation*}
$$

where $\sigma(x)=\operatorname{sgn} e_{n}(f)(x)$.
Proof. The assertion on p. 64 of Rice $|12|$ (note the misprint: = should be \geqslant) implies that the maximum in (3.4) exists. Let $q \in \Pi_{n}$ satisfy
$\sigma(x) q(x) \leqslant 1$ for $x \in E_{n}(f)$ and $\|q\|=\max \left\{\|p\|: p \in \Pi_{n}, \sigma(x) p(x) \leqslant 1\right.$ for $\left.x \in E_{n}(f)\right\}$. Then $q /\|q\|$ has norm 1 and by (3.1)

$$
M_{n}(f)^{-1}=\gamma_{n}(f) \leqslant \max _{x \in H_{n}(f)} \sigma(x) q(x) /\|q\| \leqslant 1 /\|q\|
$$

and thus $\|q\| \leqslant M_{n}(f)$. By (3.1) again. select $p \in S_{n}$ such that $M_{n}(f)^{-1}=$ $\gamma_{n}(f)=\max _{x \in E_{n}(f)} \sigma(x) p(x)$. Then $\sigma(x) p(x) M_{n}(f) \leqslant 1$ for $x \in E_{n}(f)$, and $M_{n}(f)=\left\|p M_{n}(f)\right\| \leqslant\|q\|$. Hence, $\|q\|=M_{n}(f)$, and Lemma 1 is proven.

Suppose that $T_{n}(f) \neq T_{n+1}(f)$. Then $e_{n}(f)$ can demonstrate no more than $n+2$ points of alternation in $E_{n}(f)$. We may decompose $E_{n}(f)$ into $n+2$ nonempty subsets

$$
\begin{equation*}
E^{0}, E^{1} \ldots ., E^{n+1} \tag{3.5}
\end{equation*}
$$

satisfying (i) E^{i} is compact, $i=0, \ldots, n+1$, (ii) $\max E^{i}<\min E^{i \cdot 1}$, $i=0, \ldots, n$, (iii) $\sigma(x)=\operatorname{sgn} e_{n}(f)(x)$ is constant over $E^{i}, i=0, \ldots, n+1$, and (iv) $\left.\operatorname{sgn} e_{n}(f)(x)\right|_{E^{i}}=-\left.\operatorname{sgn} e_{n}(f)(x)\right|_{E^{i} \cdot 1}, i=0, \ldots .$.

If $\left|E_{n}(f)\right|=n+2$, then each E^{f} is a singleton, and the q_{j} in (3.2) are well defined. If $\left|E_{n}(f)\right| \geqslant n+2$, we demonstrate the existence of analogous interpolating polynomials.

Lemma 2. Suppose that $T_{n}(f) \neq T_{n+1}(f), \quad E^{i}, \quad i=0, \ldots, n+1$, are given by (3.5), and $\sigma(x)$ is defined in (iii) above. Then for $j=0 \ldots, n+1$, there is a $q_{n j} \in \Pi_{n}$ and there are points $y_{n j}^{i} \in E^{i}, i=1, \ldots, n+1, i \neq j$, such that $\sigma(x) q_{n j}(x) \leqslant 1$ for $x \in E_{n}(f)$ and $\sigma\left(y_{n j}^{i}\right) q_{n j}\left(y_{n j}^{i}\right)=1, i=0 \ldots ., n+1$. $i \neq j$. Moreover, each $q_{n j}$ is unique in the sense that $q_{n j}$ is the only polynomial in Π_{n} such that $\sigma(x) q_{n j}(x) \leqslant 1$ for $x \in E_{n}(f)$ and $\sigma(x) q_{n j}(x)=1$ for some $x \in E^{i}, i=0, \ldots, n+1, i \neq j$.

Proof. In this proof we suppress the subscripts on $q_{n j}$ and $y_{n j}^{i}$. This result depends not on f but on $E_{n}(f)$ and its decomposition (3.5).

We first consider the case in which $E_{n}(f)$ is finite and induct on $E_{n}(f)$. If $\left|E_{n}(f)\right|=n+2$, then we can write $E^{i}=\left\{x_{i}\right\}, i=0, \ldots . n+1$. For fixed j, let $y^{i}=x_{i}, i=0 \ldots ., n+1, i \neq j$, and let q be the polynomial in Π_{n} satisfying $q\left(x_{i}\right)=\sigma\left(x_{i}\right), i=0 \ldots, n+1, i \neq j$. Then $\sigma\left(x_{j}\right) q\left(x_{i}\right) \leqslant 0$, for otherwise q would have $n+1$ zeros. Thus the conclusion of Lemma 2 holds if $\mid E_{n}(f)_{\mid}=$ $n+2$.

Assume that the conclusion of Lemma 2 holds whenever $\left|E_{n}(f)\right|=m \geqslant$ $n+2$. Let $\left|E_{n}(f)\right|=m+1$, and fix $j, 0 \leqslant j \leqslant n+1$. If $\left|E^{\prime}\right| \geqslant 2$, delete one point z from E^{j} and apply the induction hypothesis to obtain $q \in \Pi_{n}$ and $y^{i} \in E^{i}, i=0, \ldots, n+1, i \neq j$, such that $\sigma(x) q(x) \leqslant 1$ for $x \in E_{n}(f) \backslash\{z\}$ and $\sigma\left(y^{i}\right) q\left(y^{i}\right)=1, i=0 \ldots, n+1, i \neq j$. As before, $\sigma(z) q(z) \leqslant 0$. and the result holds. Suppose $\left|E^{i}\right|=1$. Then for some $k, 0 \leqslant k \leqslant n+1, k \neq j,\left|E^{k}\right| \geqslant 2$. Delete one point z from E^{k} and apply the induction hypothesis to obtain
$q \in I_{n}, y^{i} \in E^{i}, i=0, \ldots, n+1, i \neq k, i \neq j$. and $y^{, k} \in E^{h} \backslash\{z\}$ such that $\sigma(x) q(x) \leqslant 1$ for $x \in E_{n}(f) \backslash\{z\}$ and $\sigma\left(y^{i}\right) q\left(y^{i}\right)=1, i=0, \ldots . n+1, i \neq j$. If $\sigma(z) q(z) \leqslant 1$, then the result holds. Now suppose that $\sigma(z) q(z)>1$. Delete $1^{\cdot h}$ from E^{h} and apply the induction hypothesis again to obtain $\bar{q} \in \Pi_{n}$. $\bar{r}^{-i} \in E^{i} . i=0 \ldots ., n+1 . i \neq k, i \neq j$, and $\bar{y}^{-k} \in E^{k} \backslash\left\{y^{k}\right.$ such that $\sigma(x) \bar{q}(x) \leqslant 1$ for $x \in E_{n}(f) \backslash\left\{y^{k}\right\}$ and $\sigma\left(\bar{y}^{-i}\right) \bar{q}\left(\bar{y}^{i}\right)=1, i=0 \ldots, n+1, i \neq j$. We show that $\sigma\left(\mathrm{r}^{k^{k}}\right) \bar{q}\left(\mathrm{y}^{k}\right) \leqslant 1$. Suppose $\sigma\left(y^{k}\right) \bar{q}\left(y^{k}\right)>1$. Then $\sigma(z)|q(z)-\bar{q}(z)|>0$ and $\sigma\left(y^{k}\right)\left|q\left(y^{k}\right)-\bar{q}\left(y^{k^{k}}\right)\right|<0$. Since $\sigma(z)=\sigma\left(y^{k}\right), q-\bar{q}$ has a zero between z and y^{k}. Similarly, $q-\bar{q}$ has a zero between y^{\prime} and y^{-1} (possibly inclusive). $i=0 \ldots . . n+1, i \neq k . i \neq j$. Thus $q-\bar{q}$ has $n+1$ zeros and must vanish identically. So $q=\bar{q}$ and $\sigma\left(y^{, k}\right) \bar{q}\left(y^{h^{k}}\right)=\sigma\left(r^{\cdot k}\right) q\left(r^{k^{k}}\right) \leqslant 1$. Thus the conclusion of Lemma 2 holds for $\mid E_{n}(f)$ finite.

Now suppose $E_{n}\left(f^{\prime}\right)$ is infinite.
Since each E^{i} is compact, we may select $n+2$ sequences $\left\{E_{k}^{i}\right\}_{k}^{\prime}{ }_{1}$. $i=0 \ldots . n+1$, of nonempty, finite sets such that $E_{k}^{i} \subseteq E^{i}$ and

$$
d\left(E_{k}^{i} . E^{i}\right)=\sup _{y \in I^{i}} \inf _{x \in I}|x-v| \rightarrow 0
$$

as $k+\infty . i=0 \ldots . . n+1$. Fix $j .0 \leqslant j \leqslant n+1$. For each k, we obtain $q_{k} \in \Pi_{n}$ and $j_{k}^{i} \in E_{k}^{i}, i=0 \ldots . . n+1, i \neq j$, such that $\sigma(x) q_{k}(x) \leqslant 1$ for $x \in E_{k}=$ $\bigcup_{i}^{n}{ }_{11}^{i} E_{k}^{i}$ and $\sigma\left(y_{k}^{i}\right) q_{k}\left(y_{k}^{i}\right)=1, \quad i=0 \ldots ., n+1, \quad i \neq j$. Since each E^{i} is compact, we may pass to a subsequence and relabel so that $y_{k}^{i} \rightarrow y^{i} \in E^{i}$ as $k \rightarrow \infty . i=0 \ldots n+1, i \neq j$. By Lemma 3 in $|9|$. the q_{k} are uniformly bounded, and thus another relabeling allows us to assume that $q_{k} \rightarrow q \in I_{n}$ uniformly on I as $k \rightarrow \infty$. For $x \in E_{n}(f)$, say $x \in E^{i}$. we may find a sequence $\left\{x_{k} \mid k ;\right.$, where each $x_{k} \in E_{k}^{i}$ and $x_{k} \rightarrow x$ as $k \rightarrow \infty$. Thus $\sigma(x) q(x)=\lim _{k}, \quad \sigma\left(x_{k}\right) \quad q\left(x_{k}\right) \leqslant 1$. Also, $\sigma\left(y^{i}\right) q\left(y^{i}\right)=\lim _{k}, \quad \sigma\left(y_{k}^{i}\right)$. $q_{k}\left(y_{k}^{i}\right)=1, i=0 \ldots, n+1, i \neq j$. Thus the existence of the $q_{n j}$ and the $y_{n j}^{i}$ is demonstrated. The proof of the uniqueness of the $q_{n j}$ is the same as part of the induction step in the first case (that in showing $\bar{q}=q$). and we omit this detail.

Theorem 3. Suppose that $f \in C(I) \backslash \Pi_{n}$ and that $T_{n}(f) \neq T_{n \cdot 1}(f)$. Let $E^{i} . i=0 \ldots . . n+1$, be the decomposition of $E_{n}(f)$ given in (3.5). and let $q_{n i}$. $j=0 \ldots . n+1$. be the unique polynomials given in Lemma 2. Then

$$
M_{n}(f) \geqslant \max _{0<i<n, 1}\left\|q_{n i}\right\|
$$

Proof. The lower estimate (3.6) follows directly from the inequality $\sigma(x) q_{n j}(x) \leqslant 1$ for $x \in E_{n}(f)$ and Lemma 1.

An example can easily be constructed for which the inequality in (3.6) is strict.

4. Conditions on $\left|E_{n}(f)\right|$

For $f \in C(I) \backslash \Pi$, let $\left\{n_{k}\right\}_{k-1}^{\infty}$ be the strictly increasing sequence of nonnegative integers whose range contains precisely those n for which $T_{n}(f) \neq T_{n+1}(f)$. For each k, let

$$
\begin{equation*}
E^{0}, E^{1} \ldots . . E^{n_{k+1}} \tag{4.1}
\end{equation*}
$$

be the decomposition of $E_{n_{k}}(f)$ given by (3.5) with $n=n_{k}$.
Theorem 4. Let $f \in C(I) \backslash \Pi$ and let $\left\{n_{k}\right\}_{k}^{*}$, be as described above. If for infinitely many k, at most wo of the sets $E^{i}, i=0, \ldots . n_{k}+1$, contain more than one point, then $f \notin B$.

Proof. By relabeling we may assume that at most two of the E^{i} contain more than one point for all $k=1,2 \ldots$. . For each $j, 0 \leqslant j \leqslant n_{k}+1$, let the polynomials $q_{k j}$ and the points $y_{k j}^{i}, i=0 \ldots \ldots . n_{k}+1, i \neq j$, be as in Lemma 2 . For convenience, let $y_{k j}^{-1}=a$ and $y_{h j}^{n+2}=b$. It is possible that $y_{k j}^{1}=y_{k i}^{0}$ or $y_{k i}^{n-2}=y_{k i}^{n+1}$.

We first assert that, after extracting a subsequence and relabeling, for each k there exists $j_{k}, 0 \leqslant j_{k} \leqslant n_{k}+1$, and a polynomial $p_{k} \in \Pi_{n_{k}}$ such that $\left|p_{k}\left(y_{k i_{k}}^{i}\right)\right| \leqslant 1, i=0 \ldots, n_{k}+1, i \neq j_{k}$, and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \max _{x \in J_{k}}\left|p_{k}(x)\right|=\infty, \tag{4.2}
\end{equation*}
$$

where $J_{k}=\left|y_{k j_{k}}^{j_{k}}{ }^{1}, y_{k i_{k}}^{j_{k}{ }^{\prime}}{ }^{1}\right|$.
For each k, let μ_{k} and v_{k} be such that $\left|E^{u_{k}}\right| \geqslant 1$ and $\left|E^{r}\right| \geqslant 1$ and $\left|E^{i}\right|=1$. $i=0, \ldots, n_{k}+1, i \neq \mu_{k}, i \neq v_{k}$. For fixed k, we can find a polynomial $P_{k} \in \Pi_{n_{k}}$ such that $\left|P_{k}\left(y_{k u_{k}}^{i}\right)\right|=1, i=0 \ldots \ldots, n_{k}+1, i \neq \mu_{k}$, and

$$
\begin{equation*}
\left\|P_{k}\right\| \geqslant \frac{2}{\pi} \log \left(n_{k}-1\right)-c \tag{4.3}
\end{equation*}
$$

where c is an absolute constant. The polynomial P_{k} is obtained by removing absolute value signs and inserting appropriate factors in the terms of the Lebesgue function corresponding to the nodes $y_{k \mu_{k}}^{l}, i=0, \ldots, n_{k}+i, i \neq \mu_{k}$. Inequality (4.3) then follows from the results of Erdös $|6|$. Thus $\lim _{k \rightarrow x}\left\|P_{k}\right\|=\infty$.

If $\max \left\{\left|P_{k}(x)\right|: x \in E^{\mu_{k}}\right\}$ is unbounded, we relabel further so that $\lim _{k-1}$, $\max \left\{\left|P_{k}(x)\right|: x \in E^{\mu_{k}}\right\}=\infty$. In this case. we let $j_{k}=\mu_{k}$ and $p_{k}=P_{k}$.

Suppose that $\max \left\{\mid P_{k}(x): x \in E^{\mu_{k}}\right\} \leqslant A$ for all k where $A \geqslant 1$. If $\max \left\{\left|P_{k}(x)\right|: x \in E^{\left.r_{k}\right\}}\right.$ is unbounded, then a relabeling allows us to assume that $\left.\lim _{k \rightarrow x} \max _{\{\mid}\left|P_{k}(x)\right|: x \in E^{r_{k}}\right\}=\infty$. Since $y_{k r_{k}}^{i}=y_{k u_{k}}^{i}$ for $i \neq v_{k}$ and $i \neq \mu_{k}$. we see that $\left|P_{k}\left(y_{k_{r_{k}}}^{i}\right)\right| \leqslant A$ for $i=0, \ldots, n_{k}+1, i \neq v_{k}$. In this case, we let $j_{k}=v_{k}$ and $p_{k}=P_{k} / A$.

Finally suppose that $\left|P_{k}(x)\right| \leqslant B$ for all $x \in E_{n_{k}}(f)$ and $k=1,2 \ldots$. where $B \geqslant 1$. For each k, select $x_{k} \in I$ such that $\mid P_{k}\left(x_{k}\right)=\left\|P_{k}\right\|$. Since $y_{k j}^{j+1} \in E^{j-1}$ and $y_{k(j+1)}^{j} \in E^{j}, y_{k(j+11}^{j}<y_{k j}^{j+1}$ for $j=0 \ldots . . n_{k}+1$ and so

$$
I=\bigcup_{i}^{n}\left|y_{k i}^{\prime}, y_{k i}^{j+1}\right| .
$$

In this case, we select j_{k} so that $x_{k} \in\left|y_{k j_{k}}^{j_{k}}, y_{k j_{k}}^{j_{k}+1}\right|$ and let $p_{k}=P_{k} / B$. The first assertion is now established.

Assume now that, after relabeling, j_{k} and $p_{k} \in \Pi_{n_{k}}$ have been chosen for each k so that (4.2) and that above (4.2) hold. For $i=0, \ldots, n_{k}+1, i \neq j_{k}$, let $l_{k i}$ be the polynomial in $\Pi_{n_{k}}$ such that $l_{k i}\left(y_{k j_{k}}^{i}\right)=1$ and $l_{k i}\left(y_{k j_{k}}^{j}\right)=0, j=0 \ldots .$. $n_{k}+1, j \neq i, j \neq j_{k}$. For $i=0, \ldots, n_{k}+1, i \neq j_{k}$, the polynomials $\sigma\left(y_{k_{k}}^{i}\right) l_{k i}(x)$ have the same sign on the interval int $\left(J_{k}\right)$. Now select $x_{k} \in J_{k}$ such that $\left|p_{k}\left(x_{k}\right)\right|=\max _{x \in J_{k}}\left|p_{k}(x)\right|$. Then using the Lagrange interpolation formula, we have

$$
\begin{aligned}
\left|p_{k}\left(x_{k}\right)\right| & =\left|\sum_{\substack{i \neq 0 \\
i \neq j_{k}}}^{n_{k}+1} p_{k}\left(y_{k j_{k}}^{i}\right) l_{k i}\left(x_{k}\right)\right| \leqslant \sum_{\substack{i \neq 0 \\
i \neq j_{k}}}^{n_{k}!1}\left|I_{k i}\left(x_{k}\right)\right| \\
& =\left|\sum_{\substack{n_{k}+1 \\
i \neq j_{k}}} \sigma\left(y_{k i_{k}}^{i}\right) k^{k i}\left(x_{k}\right)\right|=\left|q_{k j_{k}}\left(x_{k}\right)\right| \leqslant M_{n_{k}}(f)
\end{aligned}
$$

by Theorem 3. It now follows that $\lim _{k \rightarrow \alpha} M_{n_{k}}(f)=\infty$ and $f \notin B$.
The following corollary is a special case of Theorem 4 with more concrete conditions and follows at once.

Corollary 1. Let $f \in C(I) \backslash \Pi$. If $\left|E_{n}(f)\right| \leqslant n+4$ for infinitely many n. then $f \notin B$.

Corollary 1 extends Theorem 4 in $|13|$ and now reduces the resolution of Poreda's problem to considering those $f \in C(I)$ such that $\left|E_{n}(f)\right|>n+4$ for all but finitely many n.

In $|13|$ it was observed that if $f^{(n+1)} \neq 0$ in the open interval (a, b) for infinitely many n, then $f \notin B$ because such a function satisfies $\left|E_{n}(f)\right|=n+2$.

Corollary 2. Let $f \in C(I) \cap C^{*}(a, b)$. If $f^{(n)}$ vanishes at most five times in (a, b) for infinitely many n, then $f \notin B$.

Proof. Let n be such that $f^{(n ; 1)}$ vanishes at most five times in (a, b). Let m be the largest nonnegative integer such that $T_{m}(f)=T_{n}(f)$. Then $T_{m}(f) \neq$
$T_{m+1}(f)$ and let E^{0}, \ldots, E^{m+1} be the decomposition of $E_{m}(f)$ given by (3.5). We show that at most two of the sets $E^{i}, i=0, \ldots, m+1$, contain more than one point. If $E^{i}=\{x\}$, then $e_{m}(f)^{\prime}(x)=0$ unless x is a or b. If $\{x, y\} \subseteq E^{i}$. then $e_{m}(f)^{\prime}(x)=e_{m}(f)^{\prime}(y)=0$ and $e_{m}(f)^{\prime}(z)=0$ for some z between x and y unless x or y is a or b. If more than two of the sets E^{i} contain more than one point, then $e_{m}(f)^{\prime}$ must have at least $m+6$ zeros in (a, b). By Rolle's Theorem $f^{(n+1)}=e_{m}(f)^{(n-1)}$ must have at least $m+6-n$ zeros in (a, b). Since $m \geqslant n, f^{(n+1)}$ would have at least six zeros in (a, b) which is a contradiction.

5. Conditions on the Distribution of $E_{n}(f)$

For convenience in this section, let $I=|0, \pi|, P_{n}=\operatorname{span}\{1, \cos x \ldots$, $\cos n x\}$, and $P=\bigcup_{n=0}^{\infty} P_{n}$. Let $f \in C|0, \pi| \backslash P$. Since $f \notin P$, there is a strictly increasing sequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ of nonnegative integers whose range consists precisely of those n for which $T_{n}(f) \neq T_{n+1}(f)$. Here $T_{n}(f)$ denotes the best uniform approximation to f from P_{n}. As in (3.5) we decompose $E_{n_{k}}(f)=$ $\left\{x \in|0, \pi|:\left|e_{n_{k}}(f)(x)\right|=\left|e_{n_{k}}(f)\right| \mid\right\}$, where $e_{n_{k}}(f)=f-T_{n_{k}}(f)$ into the subsets $E^{0}, E^{1} \ldots, E^{n_{k}+1}$. In order to describe the distribution of $E_{n_{k}}(f)$ in $|0, \pi|$. let $\alpha_{i}=\min E^{i}, \beta_{i}=\max E^{i}, i=0, \ldots, n_{k}+1$, and let

$$
\Delta_{n_{k}}=\max \left\{\beta_{i}-\alpha_{i}: i=0 \ldots, ., n_{k}+1\right\}
$$

and

$$
\delta_{n_{k}}=\max \left\{\alpha_{1} ; \pi-\beta_{n_{k}} ; \alpha_{i+1}-\beta_{i, 1}, i=1 \ldots ., n_{k}\right\}
$$

Then $\Delta_{n_{k}}$ is the largest diameter of the sets E^{i}, and $\delta_{n_{k}}$ is the diameter of the largest interval in $|0, \pi|$ which contains one E^{i} but no other points in $E_{n}(f)$. Observe that $\Delta_{n_{k}}<\delta_{n_{k}}$. We establish conditions on $A_{n_{k}}$ and $\delta_{n_{k}}$ which ensure that $f \notin B$.

Theorem 5. If $\lim \inf _{k \rightarrow \infty} n_{k} \Delta_{n_{k}}=0$, then $f \notin B$.
Proof. Let $S_{k}=\left\{p \in P_{n_{h}}:\|p\|=1\right\}$. Then by (3.1) applied to trigonometric polynomials,

$$
\begin{equation*}
\gamma_{n_{k}}(f)=\min _{p \in S_{k}} \max _{x \in E_{n_{k}}(f)}\left|\operatorname{sgn} e_{n_{k}}(f)(x)\right| p(x) . \tag{5.1}
\end{equation*}
$$

By a remark of Henry and Roulier |8|

$$
\begin{equation*}
K_{n_{k}}^{1}=\min _{p \in S_{k}} \max _{0 \leqslant i \leqslant n_{k^{+}}}\left|\operatorname{sgn} e_{n_{k}}(f)\left(\alpha_{i}\right)\right| p\left(\alpha_{i}\right) \tag{5.2}
\end{equation*}
$$

where $K_{n_{k}}=K_{n_{k}}\left(\alpha_{0}, \ldots, \alpha_{n_{k}+1}\right)$ is given by (3.2) using trigonometric polynomials. Select $q \in S_{k}$ such that

$$
K_{n_{k}}^{1}=\max _{0 \times i<n_{h}+1}\left|\operatorname{sgn} e_{n_{k}}(f)\left(\alpha_{i}\right)\right| q\left(\alpha_{i}\right)
$$

and select $y \in E_{n_{k}}(f)$ such that

$$
\left|\operatorname{sgn} e_{n_{k}}\left(f^{\prime}\right)(y)\right| q(y)=\max _{x \in E_{n_{k}}(f)}\left|\operatorname{sgn} e_{n_{k}}(f)(x)\right| q(x) .
$$

Now select j such that $y \in E^{j}$. Then $\operatorname{sgn} e_{n_{k}}(f)\left(y^{\prime}\right)=\operatorname{sgn} e_{n_{k}}(f)\left(\alpha_{j}\right)$ and

$$
\begin{align*}
& \left|\operatorname{sgn} e_{n_{k}}(f)(y)\right| q(y)-\left|\operatorname{sgn} e_{n_{k}}(f)\left(\alpha_{j}\right)\right| q\left(\alpha_{j}\right) \\
& \quad=\left|q(y)-q\left(\alpha_{j}\right)\right|=q^{\prime}(\xi)_{\mid} y-\alpha_{j} \leqslant n_{k} A_{n_{k}} \tag{5.3}
\end{align*}
$$

for some ξ between α_{j} and 1 , where the last inequality follows from Bernstein's inequality |4. p. $91 \mid$. Thus by (5.1). (5.2), and (5.3)

$$
\begin{aligned}
\gamma_{n_{k}}(f) & \leqslant \max _{x \in I_{n_{k}}(f)}\left|\operatorname{sgn} e_{n_{k}}(f)(x)\right| q(x)=\left|\operatorname{sgn} e_{n_{k}}(f)(y)\right| q(y) \\
& \leqslant\left|\operatorname{sgn} e_{n_{k}}(f)\left(\alpha_{j}\right)\right| q\left(\alpha_{j}\right)+n_{k} A_{n_{k}} \\
& =K_{n_{k}}^{1}+n_{k} A_{n_{k}} .
\end{aligned}
$$

By Theorem 2 in $|13|, K_{n_{k}}{ }^{\prime} \rightarrow 0$ as $k \rightarrow \infty$, and by hypothesis $n_{s}, 1_{n, \rightarrow} \rightarrow 0$ as $r \rightarrow \infty$ for a subsequence $\left\{n_{r}\right\}$ of $\left\{n_{k}\right\}$. Thus $\gamma_{n_{k}}(f) \rightarrow 0$ as $r \rightarrow \infty$. $\left\{M_{n}(f)\right\}_{n}{ }_{0}$ is unbounded, and $f \notin B$.

Theorem 6. If $\lim \sup _{k-}, n_{k} \delta_{n_{k}}=\infty$. then $f \notin B$.
Proof. Assume without loss of generality that $\lim _{k \rightarrow,} n_{k} \delta_{n_{k}}=\infty$. The proof is given for $\delta_{n_{k}}=u_{j+1}-\beta_{j-1}$ since the case $\delta_{n_{k}}=\alpha_{1}$ and $\delta_{n_{k}}=\pi-\beta_{n_{k}}$ are similar. Let $c=\left(\beta_{i}, \alpha_{j}, 1\right) / 2$. Define $h \in C|0 . \pi|$ by $h(0)=h\left(\beta_{j, 1}\right)=$ $h\left(\alpha_{j, 1}\right)=h(\pi)=0 . h(c)=-\left.\operatorname{sgn} e_{n_{k}}(f)\right|_{,}$, and linear in between these points. Then h satisfies a Lipschitz condition with constant $\lambda=2 \delta_{n_{k}}{ }^{1}$. By Jackson's Theorem $\mid 4$, p. $143 \mid$ there is a polynomial $p \in P_{n_{k}}$ such that $\|h-p\| \leqslant$ $\pi \lambda / 2\left(n_{k}+1\right)=\pi /\left(n_{k}+1\right) \delta_{n_{k}}$. If $\tau_{k}=\pi /\left(n_{k}+1\right) \delta_{n_{k}}$, then $\lim _{k \cdots} \tau_{k}=0$. For k sufficiently large, $\mid p\|\geqslant\| h \|-\tau_{k}=1-\tau_{k}>0$. For $x \in E_{n_{k}}(f) \backslash E^{j}$.

$$
\left|\operatorname{sgn} e_{n_{k}}(f)(x)\right| p(x) \leqslant|p(x)|=|h(x) \cdots p(x)| \leqslant \tau_{k} .
$$

Since $\operatorname{sgn} h(x)=-\operatorname{sgn} e_{n}(f)(x)$. for $x \in E^{j} \subseteq\left(\beta_{i}, \alpha_{j, 1}\right)$ we have

$$
\begin{aligned}
\left|\operatorname{sgn} e_{n}(f)(x)\right| p(x) & \leqslant\left|\operatorname{sgn} e_{n}(f)(x)\right|(p(x) \cdots h(x)) \\
& \leqslant|p(x)-h(x)| \leqslant \tau_{k} .
\end{aligned}
$$

By (5.1)

$$
\begin{aligned}
\gamma_{n_{k}}(f) & \leqslant \max _{x \in E_{n_{k}}(f)}\left|\operatorname{sgn} e_{n}(f)(x)\right| p(x) /\|p\| \\
& \leqslant \tau_{k} /\|p\| \leqslant \tau_{k} /\left(1-\tau_{k}\right)
\end{aligned}
$$

Thus $M_{n_{k}}(f) \geqslant\left(1-\tau_{k}\right) / \tau_{k}$ which tends to ∞ as $k \rightarrow \infty$. and $f \notin B$.

Acknowledgment

The authors appreciate the numerous suggestions of the referee which made this paper more readable.

References

1. M. W. Bartet.t, On Lipschitz conditions, strong unicity and a theorem of A. K. Cline, J. Approx: Theory 14 (1975), 245-250.
2. M. W. Bartelt and M. S. Henry, Continuity of the strong unicity constant on $C(X)$ for changing X, J. Approx. Theory 28 (1980), 87-95.
3. M. W. Bartelt and H. W. McLaughlin. Characterizations of strong unicity in approximation theory, J. Approx. Theory 9 (1973), 255-266.
4. E. W. Chenex, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
5. A. K. Clinf:, Lipschitz conditions on uniform approximation operators, J. Approx. Theory 8 (1973), 160-172.
6. P. Erdös, Problems and results on the theory of interpolation II, Acta Math. Acad. Sci. Hungar. 12 (1961). 235-244.
7. M. S. Henky and L. R. Huff. On the behavior of the strong unicity constant for changing dimension, J. Approx. Theory 27 (1979), 278-290.
8. M. S. Henry and J. A. Rollier, Lipschitz and strong unicity constants for changing dimension, J. Approx. Theory 22 (1978). 85-94.
9. M. S. Hfnky and D. Schmidt. Continuity theorems for the product approximation operator, in "Theory of Approximation with Application" (A. G. Law and B. N. Sahney, Eds.), pp. 24-42. Academic Press. New York, 1976.
10. D. J. Newman and H. S. Shapiro. Some theorems on Čebyšev approximation, Duke Math. J. 30 (1963), 673-681.
11. S. J. Porbod. Counterexamples in best approximation. Proc. Amer. Math. Soc. 56 (1976). 167-171.
12. J. R. Ricl., "The Approximation of Functions." Vol. 1. Addison-Wesley, Reading, Mass.. 1965.
13. D. Scrmidi. On an unboundedness conjecture for strong unicity constants, f. Approx. Theor! 24 (1978), 216-223.
