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1. INTRODUCTIO;'o;

Let C(l) denote the space of continuous, real-valued functions on the
interval I ~ [a. b I endowed with the uniform norm II ' ii, Let JIn denote the set
of all algebraic polynomials of degree 11 or less. and let JI denote the set of
all algebraic polynomials, For a given It:: C(l). with best uniform approx­
imation TnUl from JIn, Newman and Shapiro [101 showed that there is a
constant ;' > 0 such that

1If-- pi > ( 1. I )

for all p Ell", The largest such constant ;: is written )',,(f) and is called the

Slrollg IIl1icil)' cOllslalll. It is known that 0 < )'ncn ~ 1 and that ;'n(/l = 1 for
any function fE lin' Let /\In(/) = ;'ncn I. Properties of the sequence
IM,Jn f ,: " have been studied in 17.8. II. 131. In particular. in III Poreda
asked:

For what functions fin C(!l is the sequence IHn(j'l!,: Ii

hounded'?

let H:/rc= e(l): 1/\II/(/ll,; "is hounded!. Evidently, llc=~B, Poreda 1111
gave an example of a function fE B. Henry and Roulier [81 gave a wide
class of functions which are not in B and conjectured that in fact B = Jl.

Let E,Jn = Ix E I: f(x) - Tn(/)(x)i = Ilf - TI/Ulll1 he the set of extreme
points ol'I- TI/ef') and let IE,,(/)i denote the cardinality of E,,(fl. Previous
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work indicates that the properties of the sequence IMIIU) I,; I) depend on the
distribution of EIIU) in J and on 1EIIU)I. In particular, Schmidt 1131 showed
that if IE,JIlI = n + 2 for infinitely many n, then JE B. This raised the
question of whether in fact there exists a nonpolynomial function f in C(I)
for which IEIIU)I > n + 2 for all but finitely many n. A negative answer to
this question would solve Poreda's problem. In 1131 it was also shown that if
there is a nondegenerate interval Ie, dl c:; 1 for which EIIU) n Ie, dl = 0 for
infinitely many n, then JE B.

In Section 2 of this paper we demonstrate the cxistence of a
nonpolynomial function f in C(I) such that 1 EIIU)i > i1 + 2 for all 1/ and
show that B is of first category as is n. In Section 3 we obtain an inter­
polatory lower estimate for MIlU) which is similar to an upper estimate for
MnCf) given in 151. This lower estimate will then be used in Section 4 to
relax the condition IEIIU)I = 1/ + 2 for infinitely many i1 in Theorem 4 of
1131. In Section 5, two conditions based on the distribution of EIIU) in I
which ensure that JE B are given.

2. NONUNIQLJENESS OF ALTERNANTS

For JE C(I), let ellU) = J - TIlUl. Then E,JIl = 1x E I: ]ell(f)(xl] =

II ellU)11 f·

THEOREM 1. There is a nonpo(l'nomial fE C(ll such that EIlUll >
n + 2Jor all n.

Proof For convenience we ass ume that 1 = 1-- J, I I. We show that there
is an even function JE C(I) such that 0 E E"Ul for n = 0, L.. .. That such a
function satisfies the conclusion of Theorem I can be seen as follows. Let It

be the smallest positive element of E,JIl. The number It exists since
oE EIlU) and EllUl is compact. Since el1Ul is even, e,JIl(--a) = el1 (f)(a)
and EllUl contains no points in the open interval (-0, 0). Thus an altemant
for ellU) cannot include both a and -(J, and we see that I E"U)I >11 + 3.

We employ the Baire category theorem to demonstrate the existence of
such a function. Let / be the closed subspace of C(J) consisting of all even
functions in C(J). For n = O. L.. .. let

A,,= 1/E,-':OEt,Jf)[.

To show that All is closed, let U~I: [ be a sequence in A" and IE" such
that IIJk - JII--> 0 as k .... 00. By the continuity of the operator TII.I!e"U~)il I

Ilell(flll and Ile,,(fk)11 = le"Uk)(Oll .... le"U)(O)!. Thus leIlUl(O)1 = Ile,,(/)11 and
oE EIIU). SO JE All' and A" is closed.
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We now show that A" has an empty interior. Let I E A ,,' We consider two
cases.

Suppose e,,(f)(O) = O. Then IE il". Given c > 0 select hE / so that
h(O) = 0, h(i/(n + 2)) = (-I )i c. i = L..., n + 2. and h is linear on each of the
intervals I(i - I )/(n + 2), i/(n + 2) I, i = I, ... , n + 2. Now extend h to be even
on I-I. II. Then hE /, T,,(h)= 0, and £,,(h) = I±i/(n + 2): i= 1,. ... n + 21­
If g=l+ h. then since IE il", T,,(g) =1+ T,,(h) =/ and e,,(g) = h. As a
result, 0 E £,,( g) = £,,(h), g E A", and II g - /11 = II h II = I;. Hence,.r is not an
interior point of A".

Suppose (',,(f)(0) *- O. Without loss of generality. assume [= (',,(f)(0) > 0,
and let 1:, 0 < I: < [/2, be given. Since (',,(f) is continuous at O. there is a
() > 0 such that 0 ~ [-- e,,(f)(x) < /; for Ixl < 15. Define h on iO. ()/2. ()I by
h(O) -- 1:. h(I5/2) = [- e,,(f)(15/2), and h(l5) = O. Now extend h
continuously to [0, I[ so that -I;~h(x)~[-e,,(f)(x) for xE [0, ()I, and
h(x) = 0 for x E 115, II. Finally, extend h to be even on 1- I. I I. Thus h E /
and Ilhll = I:. If we set g=/+ h. then for x E I-I. -()I u Ii). J I.

I g(x) - T,,(f)(x) = I e,,(f)(x)1 ~ r.

For x E 1-15,01,

g(x) - T,,(f)(x) = e,,(f)(x) + h(x);;;' [- I: - I: > 0

and

g(x) - T,,(f)(x) = e,,(f)(x) + h(x) ~ e(f)(x) + [ - e,,(f)(x) = r.

Moreover. g(r5/2) - T,,(f)(15/2) = r. Thus II g - T,,(f)11 = r. If we select an
altern ant for e,,(f), then since e,,(f) > 0 on 1-15,151 at most one point in the
altern ant may lie in 1-15.151. Replacing this point by ()/2. if necessary. we
obtain an altemant for g - T,,(f), and thus T,,(g) = T,,(f). Since g(O)­
T,,(f)(O)=c,,(f)(O)-I:=[-e. OEE,,(g) and gEA". In addition.

Ii g - /'1 = II h II = e. Hence. .r is not in the interior of A", and so A" has an
empty interior. By the Baire category theorem, / *- U,: "A", and the proof
of Theorem I is complete.

The proof of Theorem I shows the existence of a set of functions of second
category in / for which Poreda's question remains unanswered. In contrast
to this, we have:

THEOREM 2. 8 is a/first category in C(J).

Proof For L = 1.2..... let 8 1. = I/E c(/): M,,(f) ~ L. 11 = 0, L .. f. By
Theorem 2 in III, M,,(f) is a lower semicontinuous function of / for each 11,

and 8, is closed. Let /E 8,. For each n. select a polynomial gIl of exact
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degree 1/ + 1 such that III- g"II-~ 0 as II -+ 00. By Theorem 2 in 171.
lim,,~ f ,IV/,,( gIl) = 00. and thus every neighborhood of I contains a function
not in 8/ . 8/ has an empty interior. and Theorem 2 is proven.

3. INTERPOLATORY ESTIMATES FOR M,,(f)

For fixed 1/. let S" = Ip Ell,,: II pil = I f. The following characterization of
;,,,U) is due to Bartelt and McLaughlin (see II I and Theorem 5 in 131). If
IE C(1)\1l". then

I'nU) = min max Isgn enU)(x) I p(x).
f'E,Sn XEFnC{)

(3.1 )

Many of the analyses of the asymptotic behavior of M nU) rely on an inter­
polatory characterization of MnU) (see 17. 8. 131). Let

X o < XI < ... < x" _ j

be an alternant for en(f). For j = 0..... II + L let qi be the unique polynomial
in Iln satisfying q/xi ) = sgn enU)(x;l. i = 0•.... II + I. i '* j. Cline 14] has
shown that

Kn = Kn(xo..... x".\) = max Ilqi
(I nil'

(3.2)

is a suitable strong unicity constant. that is. K,,?: MnU). Henry and Roulier
181 proved that K n = MnUl if IEnU)1 = II + 2. As a result. the analyses of
17. 8. 131 either impose the condition or conditions which imply
IEnU)1 = 1/ + 2. Unfortunately. when I E"U)I > II + 2. we only have

MnU) ~ min K". (3.3 )

where the m1l11mUm in (3.3) is taken over all alternants for e"U). An
example which appears in 121 shows that the inequality in (3.3) can be strict
when I E"U)I > II + 2.

In this section. we obtain a lower estimate for MnU) when E"U)I?: 1/ + 2

and TnU) * T" ! \ en.
LEMMA I. rtIE C(l)\!l". thel/

lvl,,(f) = maxj!1 pll: p E Il". a(x) p(x) ~ I lor X E E,,(f) i. (3.4)

l\'here a(x) = sgn e,,(J)(x).

Prooj: The assertion on p. 64 of Rice 1121 (note the misprint: = should
be ?:) implies that the maximum in (3.4) exists. Let q E nIl satisfy
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a(x)q(x)~ I for xEEn(f) and Ilqll=maxlIlpll: pEn", a(x)p(x)~ I for
x E E,,(f) f. Then q/II qll has norm I and by (3.1)

Mn(f) 1 = fn(f) ~ max a(x) q(x)/!Iqll ~ I/llqll
XE/:

I1
( /)

and thus Ilqll~Mn(f). By (3.1) again. selectpESn such that Mn(f) I

(n(.f) = maxXE1"U) a(x)p(x). Then a(x)p(x)Mn(f)~ I for xEEn(f), and
lHn(f) = II pMn(f)11 <II q II· Hence, II q II = Mn(f), and Lemma I is proven.

Suppose that Tn(f) *- Tn f ,(f). Then en(f) can demonstrate no more than
// + 2 points of alternation in En(f). We may decompose E,/f) into // + 2
nonempty subsets

EO.E1 ..... E n+ , (3.5 )

satisfying (i) E i is compact. i=O..... n+1. (ii) maxEi<minC·'.
i = 0..... n, (iii) a(x) = sgn en(f)(x) is constant over E i

• i = 0..... n + 1. and
(iv) sgn en(f)(x) Iti = -sgn en(f)(x) IFi' I, i = 0•.... n.

If 1En(f)1 = 11 + 2. then each E i is a singleton, and the qi in (3.2) are weI!
defined. If IEn(f)1 ~ n + 2. we demonstrate the existence of analogous inter­
polating polynomials.

LEMMA 2. Suppose that Tn(f) i= Tn+ 1(f). E i
• i = 0..... n + 1. are

glt'el1 by (3.5). and a(x) is defined in (iii) above. Then for )= 0.... , n + I.
there is a qni E nn and there are points Y~i E E i

• i = I,... , n + I. i·fc). such
that a(x)qn/x)~ I for xEEn(f) and a(y~)qn;(Y~)= I. i=O..... //+ 1.
i *- J. Moreover, each qnj is unique in the sense that qnj is the on(v polynomial
in nn such that a(x) qn;(x) ~ I for x E En(f) and a(x) qni(x) = I for same
x E E i

• i = 0,.... 11 + I. i i= J.

Proof In this proof we suppress the subscripts on qni and <'i' This result
depends not on f but on En(f) and its decomposition (3.5).

We first consider the case in which En(f) is finite and induct on 1 E"U'ji.
If! Enen = 11 + 2. then we can write E i = lx;l. i = 0..... 11 + 1. For fixed). let
r i = x,. i = 0..... n + 1. i i=). and let q be the polynomial in nIl satisfying
q(xi ) = a(xJ i = 0..... 11 + I. i i=). Then a(x) q(.x) ~ O. for oth.erwise q
would have 11 + I zeros. Thus the conclusion of Lemma 2 holds if IE,,(fl! =
11 t, 2.

Assume that the conclusion of Lemma 2 holds whenever i En(f)i = In ~
11+2. Let IEn(f)I=In+ 1. and fix). 0~)~11+ 1. If !CI~2. delete One
point z from Ei and apply the induction hypothesis to obtain q E: nn and
yiEE i

• i=O..... I1+ l. ii=). such that a(x)q(x) ( 1 for xEEn(f)\~zf and
a(y')q(yi) = I. i=O..... 11 + 1. ii=J. As before. a(z)q(z)(O. and the result
holds. Suppose IEi I = 1. Then for some k. 0 ( k ( 11 + 1, k i=). !E"! ? 2.
Delete one point z from Ek and apply the induction hypothesis to obtain
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q Ell", l'i EEl, i = 0,... , n + I, i * k, i *), and y' E E'\ Iz r such that
a(x)q(x)~ 1 for xEE,,(f)\izr and a(/)q(yi)= L i=O, .... n+ L i*j. If
a(z) q(z) ~ L then the result holds. Now suppose that a(z) q(z) > L Delete
.1" from E' and apply the induction hypothesis again to obtain q E Il

li
•

J,i E e. i = 0,... , n + 1. i -t k, i * j, and .f''' E E'\ IY' i such that a(x) q(x) ~ I
for xE EIIU)\u"f and aU,i)q()-;i) = L i=O.... , n + L i*j. We show that
a(y')q(y") ~ I. Suppose a(y')q(y") > I. Then a(z)lq(z) q(z)1 > 0 and
a(lJ)lq(y')-q(y')1 <0. Since a(z)=a(y"), q-q has a zero between z
and y". Similarly, q -- q has a zero between yi and )-;i (possibly inclusive),
i = 0,.... n + I, i *' k, i * j. Thus q - q has n -+- I zeros and must vanish iden­
tically. So il= q and a( y") (I( .1"') a()''') q( .1''' ),c; I. Thus the conclusion of
Lemma 2 holds for! EIJ!') finite.

Now suppose! f;,ren is infinite.
Since each E i is compact, we may select n + 2 sequences i,E~ I: I'

icc•• 0,.... n+ I. of nonempty, finite sets such that E~ ~ E i and

d(E~.EI)= sup inf !x-)'i--->O
"!C-' 1'1 XE.}-'"

as k • 00, i 0.... , 11 + 1. Fix), O,c;j,c; n+ I. For each k, we obtain q" E 11 11

and y~ E F~, i = 0.... , n t 1, i * j, such that a(x) q,,(x) ~ I for x E E" =
U;"o'E~ and a(y~)q,(y~)= 1, i= 0,.... 11 + 1. i*j. Since each E i is
compact. we may pass to a subsequence and relabel so that y~-. )" E E I as
k 'OC!, i=O, .... 11+ I. i*j. By Lemma 3 in 191, the q" are uniformly
bounded, and thus another relabeling allows us to assume that q" -~ q E [III

uniformly on I as k ._~ 00. For x E EIIU), say x E e, we may find a
sequence IX,:,,' I' where each x"EE~ and x,"x as k-->OC!. Thus
a(x)q(x)=lim"'f a(x,,) q(x,,)~ I. Also, a(/) q(yi)=lim"'i a(y~)·

q,,(y~) = L i = 0, .... II +- L i *j. Thus the existence of the qllj and the .1':,) is
demonstrated. The proof of the uniqueness of the q"i is the same as part of
the induction step in the first case (that in showing q = q). and we omit this
detail.

TIIEOREM 3. Suppuse Ihal I'= C(i)\1l
1i

alld Ihal TIIU)fc 1" len. Lei
E'. i=O..... 11+ 1, be Ihe decomposilion ofE"Cngiven in (3.5), and lei ql1i'
j = 0..... 11 + I. be Ihe unique polynomials gil'en in Lemma 2. Then

M"U) ~ max q"jli.
() n I

Proof The lower estimate (3.6) follows directly from the inequality
a(x) qll)x) ~ I for x E EIIU) and Lemma I.

An example can easily be constructed for which the inequality in (3.6) is
strict.



STRONG UNICITY CONSTANTS

4. CONDITIONS ON !EIl(f)!
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For IE C(I)\n let 111 k f ~_, be the strictly increasing sequence of
nonnegative integers whose range contains precisely those 11 for which

T,,(f) i=- Til" ,(f). For each k, let

(4.1 )

be the decomposition of E,,/I) given by (3.5) with 11 = 11 k ,

THEOREM 4. Let IE C(I)\n al1d let l11dZ 1 be as described above. ~/

for itifil1itely mal1Y k, at most two of the sets Ei
, i = 0,.... 11, + 1. col1tail1

more thal1 ol1e poil1t. thel1 IE B.

Proof. By relabeling we may assume that at most two of the E' contain

more than one point for all k = I, 2,.... For each}, °~}~ 11 k + I, let the
polynomials qkj and the points ytj . i = 0..... 11, + I. i i=-}. be as in Lemma 2.
For convenience, let .1';/ = a and yZ/ 2 = b. It is possible that y,/ = Y~j or
\"kl

. 2 =: r,': ~~. 1.
. J • J

We first assert that, after extracting a subsequence and relabeling. for each
k there exists }k' 0 ~}, ~ 11, + 1. and a polynomial p, E nil, such that

IPk(Y~iJ ~ L i=O.... , 11 k + I, ii=-},. and

lim max Ip,(x II = 00. (4.2)
k---+"f .\"E.I"

where J. = I vh. " v-h· 1 'I., • k,IA '. kh

For each k, let f.1k and I', be such that IEUA I ;:;, I and IEIA I;:;, 1 and IE' I= 1.
; = 0, .... 11, + L ; i=- f.1k' ; 1= vk . For fixed k, we can find a polynomial

Pk E nil, such that iP,(Y~uJI = L i= 0..... 11, + 1, ;1=f.1k' and

(4.3 )

where c is an absolute constant. The polynomial P k is obtained by removing
absolute value signs and inserting appropriate factors in the terms of the
Lebesgue function corresponding to the nodes yL

A
• ; = 0, .... 11, + I. i 1= Il,.

Inequality (4.3) then follows from the results of Erdos 161. Thus

lim'4'j IIPkl1 = 00.

If max1IPk(x)l:xEEuAf is unbounded, we relabel further so that lim,_,
max11P,(x)l: x E EUA f = 00. In this case. we let}k = ,11 k and Pk = Pk·

Suppose that max1IPk(x)l:xEPAf~A for all k where A;:;' 1. If
max1IPk(x)l: x E E"Al is unbounded, then a relabeling allows us to assume

that limk~f max1IPk(x)l:xEEIA}=w. Since ytlA=ytuA for ;"leV, and
i 1= Ilk' we see that IPk(.vLJI ~ A for i = 0•... , 11 k + 1, i 1= vk. In this case, we
let Jk = Ilk and Pk = PdA.
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Finally suppose that IPk(x)1 ~ B for all x E E,,/Il and k = I. 2, .... where
B ~ 1. For each k. select x, E I such that 1 Pk(xk)1 = P& Since )~; lEe' I

and Y~(j+ II E Ei, Y~(j" II < y~; I for J = 0,... , 11 k + I and so

11' I

i (I

In this case, we select Jk so that xk E IY~'h I. )~): I I and let Pk = PklB. The
first assertion is now established.

Assume now that, after relabeling. Jk and Pk En", have been chosen for
each k so that (4.2) and that above (4.2) hold. For i = 0, .... 11 k + I. i i=Jk' let

Iki be the polynomial in nfl, such that Iki ( Y~i) = 1 and Ik;(.~~i) = 0, J = 0,....
11, + L J i= i, J i=Jk' For i = 0.... , 11 k + 1, i i=Jk' the polynomials a(J'~i) Iki(X)
have the same sign on the interval int(Jk)' Now select x k E Jk such that

Pk(xk)1 = max'EJ, IPk(x)l· Then using the Lagrange interpolation formula. we
have

I
l/z+,1 Pk()'~h)lki(x,) I ~ \+,1 Ilki(xk)i
i 0 i 0

i-th il-j/..

I

", + I I
\' a(Y~i) l'i(xk) = Iqkh(xk)1 ~ M",(/)
i 0

i l,h

by Theorem 3. It now follows that limk~:f M",(/) = 00 and fE B.

The following corollary is a special case of Theorem 4 with more concrete
conditions and follows at once.

COROLLARY I. Let fE C(l)\n. If IE,,(/)I ~ n + 4 for illfinitely many n.
then fE B.

Corollary I extends Theorem 4 in 1131 and now reduces the resolution of
Poreda's problem to considering those IE C(I) such that iE,,(/)I > n + 4 for
all but finitely many 11.

In 1131 it was observed that if f l
". II *°in the open interval (a, b) for

infinitely many n, then IE B because such a function satisfies

i EIl(/)1 = 11 + 2.

COROLLARY 2. Let fE C(I) n C f (a, b). If p"l L'Gnishes at most fire
limes ill (a, b) for infinitely many 11, then fE B.

Proof Let 11 be such that p'" II vanishes at most five times in (a, b). Let
m be the largest nonnegative integer such that T",(/) = TIl(f). Then T",(f) i=



STRONG UNICITY CONSTANTS 77

Tm+I(J) and let EO,... ,£m+l be the decomposition of Em(J) given by (3.5).
We show that at most two of the sets £i, i = 0,.... m + 1, contain more than
one point. If E i

= jX}, then em(J)' (x) = °unless x is a or b. If jx, y~ c; E i
•

then em(J)' (x) = em(J)' (y) = °and em(J)' (z) = °for some z between x
and y unless x or y is a or b. If more than two of the sets E i contain more
than one point, then em(J)' must have at least m + 6 zeros in (a. b). By
Rolle's Theorem pn; I) = em(f)ln . II must have at least m + 6 - 11 zeros in
(a. b). Since m> n, f(n. 1) would have at least six zeros in (a. b) which is a
contradiction.

5. CONDITIONS ON THE DISTRIBUTION OF En(J)

For convenience in this section, Jet 1= 10. nl, Pn = span jl. cos x.....
cos nxf, and P= U~ oPn • Let fE C[O, n]\P. SincefE P, there is a strictly
increasing sequence {nd;;C~ 1 of nonnegative integers whose range consists
precisely of those n for which Tn(J) 01= T" \ I (J). Here Tn(J) denotes the best
uniform approximation to f from P". As in (3.5) we decompose E",(J) =
jx E [0, nl: len (f)(x)1 = lie" (J)II}, where en (J) =f - Tn (J) into the subsets1 ' , ,
EO. E 1

•••• , E n,+ . In order to describe the distribution of En (J) in 10. n]. Jet
" ,

u; = min E'. fJi = max £1. i = 0.... , nk + I, and let

LI", = maxjfJ; - u;: i = 0..... nk + If

and

Then LIn is the largest diameter of the sets E i
• and 6

11
is the diameter of the, . ,

largest interval in 10, nl which contains one E' but no other points in E,,(J).
Observe that LIn < 6" . We establish conditions on LI" and 611 which ensure

k k A k

that fE B.

THEOREM 5. lflim infk•J nkLl n, = 0. then fE B.

Proof Let Sk=jpEP",:llpll=!f. Then by (3.1) applied to
trigonometric polynomials.

1'" (J) = min max Isgn e,,(J)(x)1 p(x).
A PES!.. XEFrz;.,l.() k

By a remark of Henry and Roulier 181

K" I = min max Isgn e"Jf)(uJ 1 p(uJ
k pEeS'" O~i-(nk-' I

(5.1 )

(5.2 )
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where K", = K",(ao,... , a"" I) is given by (3.2) USIng trigonometric
polynomials. Select q E S k such that

K,,/ = 'I max [sgn e"Jf)(aJI q(a i )
\ ,I fI/... + I

and select .1' E E,,/f) such that

Isgn ell (f)( .1') Iq( .1') = max Isgn ell (I)(x) Iq(.\).
f.:.\E: Fllt(l) /...

Now selectj such that .I' E P. Then sgn e"Jf)(.1') = sgn e"JI)(o) and

Isgn e,,/f)( y) 1 q( y ) [sgn ell,(f )(a) I q(uj )

'" Iq(y) - q(aj)1 = q'(O y uj (,ll k Ll", (5.3)

for some ~ between uj and y, where the last inequality follows from
Bernstein's inequality 14. p. 911. Thus by (5.1). (5.2). and (5.3)

;,,,,(f) (, max Isgn e"Jf)(x) Iq(x) = Isgn e"JI)( y) Iq( y)
.'E/: l1t.UJ

By Theorem 2 in 1131. K",I -~ 0 as k-> 00. and by hypothesis 1l,.J", .~ 0 as
)'--->00 for a subsequence 111,.1 of !l1kf. Thus i',,}I)"O as )'>00.

IM,,(f)l,: (l is unbounded, and IE B.

THEOREM 6. {{lim SUPk ~ j Ilk r5", =00. thell IE B.

Proof Assume without loss of generality that limk~! !lkO", = 00. The
proof is given for 3", = uj t I-lij I since the case 3", = U I and 3", == J[ - fJ",
are similar. Let c = (iii I + U i . 1)/2. Define hE C[ O. J[ I by h(O) = h(fJj I) =

h(ui . I) = h(Jr) = O. h(c) = sgn e",(f) and linear in between these points.
Then h satisfies a Lipschitz condition with constant A= 26",1. By Jackson's
Theorem 14. p. 1431 there is a polynomial pEP", such that II h p ~

JrA/2(l1 k + I) = 71/(l1 k + I) 6",. If rk = 71/(l1 k + I) 3",. then lim k r" = O. For
k sufficiently large. pi!): I!hl r" = 1- T" > O. For x E E",C{)\P.

Isgn e",(f)(x) I p(x) (, ip(x)1 = !h(x) p(x)1 ~ r"

Since sgn h(x) = -sgn e,,(f)(x). for x E P (iii I' u i . I) we have

Isgn e,,c{)(x) I p(x) ~ Isgn e,,(I )(x)!( p(x) h(x))

(, Ip(x) -- h(x)! ~ r".



By (5.1)

STRONG lJNICITY CONSTA:-<TS 7Y
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