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l. INTRODUCTION

Let (/) denote the space of continuous. real-valued functions on the
interval / — |a. b| endowed with the uniform norm || - j|. Let [T, denote the set
of all algebraic polynomials of degree n or less. and let IT denote the set of
all algebraic polynomials. For a given /& C(J). with best uniform approx-
imation T,(/)} from [1,. Newman and Shapiro |10] showed that there is a
constant i > 0 such that

f=pl 2/ =T+ e =T (L.

for all p € I1,. The largest such constant j is written ;, (/) and is called the
strong unicity constant. 1t is known that 0 < y, (/)< | and that 3, (/)= 1 for
any function f€ I, Let M (/)=7,(/) ' Properties of the sequence
1M (/) have been studied in [7. 8. 11. 13]. In particular. in {11 Poreda
asked:

For what functions /" in C(/) is the sequence {M (/)1

bounded?

Let B =1 /€CU:IM (), is bounded}. Evidently, IT < B. Poreda |11]
gave an example of a function /& B. Henry and Roulier |8] gave a wide
class of functions which are not in B and conjectured that in fact B = [1.
Let £ (/Y= {x€ ()= T (NN == T, (/) be the set of extreme
points of /'— T (/) and let |E (/) denote the cardinality of £ (/). Previous
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work indicates that the properties of the sequence (M, (f)}, , depend on the
distribution of E,(/f) in I and on |E (/)| In particular. Schmidt |13 | showed
that if |E (/) =#n+ 2 for infinitely many n, then f& B. This raised the
question of whether in fact there exists a nonpolynomial function / in C(/)
for which |E (f)| > n + 2 for all but finitely many #. A negative answer to
this question would solve Poreda’s problem. In [13] it was also shown that if
there is a nondegenerate interval |c. d] < 7 for which £, (/)" |e. d| = @ for
infinitely many »n, then f'& B.

In Section2 of this paper we demonstrate the existence of a
nonpolynomial function f in C(/) such that |E,(/) > #n + 2 for all # and
show that B is of first category as is [1. In Section 3 we obtain an inter-
polatory lower estimate for M, (f} which is similar to an upper estimate for
M (/) given in |5]. This lower estimate will then be used in Section4 to
relax the condition |E,(f) =#n+ 2 for infinitely many # in Theorem 4 of
[13]. In Section 5, two conditions based on the distribution of £, (/) in /
which ensure that f& B are given.

2. NONUNIQUENESS OF ALTERNANTS

For f€C(. let e,(f)=/~T,(/). Then E,(f)=Ix€ I [e,(/)x) =
le (O

THEOREM 1. There is a nonpolvnomial f& C(I) such that E, (f) >
n+ 2 for all n.
Proof. For convenience we assume that / = |1, ||. We show that there

is an even function € C(/) such that 0 € E,(f) for n = 0. l..... That such a
function satisfies the conclusion of Theorem I can be seen as follows. Let «
be the smallest positive element of £, (f). The number « exists since
0€ E (f)and E, (/) is compact. Since e,{/} is even, e,(f)(—a) = e,/ Hu)
and E,(f) contains no points in the open interval (—ea, «). Thus an alternant
for e,(f) cannot include both « and —«. and we see that [E (/)| >n+ 3.

We employ the Baire category theorem to demonstrate the existence of
such a function. Let # be the closed subspace of C(/) consisting of all even
functions in C(/). For n =0. 1...., let

A, ={fe0EE (I

To show that 4, is closed, let {/.}, | be a sequence in A, and /€ - such
that || f, — Il - O as k - co. By the continuity of the operator T,. e, (/I »
le. (/I and [[e, (Sl = e, (/i)(0) = e, (/HO). Thus je,(/)0) = [le, (/)| and
0€ E(f) So feA,. and 4, is closed.
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We now show that A4, has an empty interior. Let /€ 4,. We consider two
cases.

Suppose e,(/}0)=0. Then fe& H,,. Given ¢ > 0 select 1€~ so that
h(O0)=0, A(i/(n + 2)) = (—1) e. i=l...,n + 2. and 4 is linear on each of the
intervals [(f — 1)/(n+ 2), i/(n + 2}], i = L....,n + 2. Now extend / to be even
on |[~1.1|. Then h€ <, T,(h)y=0,and E (h)={+i/(n +2):i=l...n+2}
If g=f+ h. then since fefl,. T ,(gy=/+T,h)=/ and ¢,(g)=h. As a
result, 0 € E (g)=E,(h). g&A,.and || g — /|| = hl = ¢ Hence, [ is not an
interior point of 4, .

Suppose e, (/)(0) = 0. Without loss of generality, assume t=¢,(f)(0) > O.
and let & 0 < ¢ <1/2, be given. Since e, (/) is continuous at 0. there is a
A >0 such that 0 <t —e,(/)(x) <¢ for |x| < d. Define h on {0./2.} by
hHO)=—c¢, h(d/2)y=1—e,(f)5/2). and h(5)=0. Now extend A
continuously to [0, I} so that —s  A(x) <t —e,(/Nx) for x € (0,4, and
h(x) =0 for x € |d. 1|. Finally, extend # to be even on |—1. 1]. Thus i1 € ~
and [[All=«. If we set g = f+ h. then for x € [—1. =3 U |0. 1].

For x € |—0.d].
g) =T, (S Nx)=e (X)) +hx)ZT—6—£>0

and

g(x) = T,(/)Nx) = ,(/Nx) + hlx) <e(fHx) + 17— e,(f)x) =

Moreover. g(6/2) — T,(/}/2) =1. Thus || g — T ()| = r. If we select an
alternant for e (f). then since e, (/) > 0 on |—d, d| at most one point in the
alternant may lie in [—0. d|. Replacing this point by /2. if necessary. we
obtain an alternant for g — T,(/). and thus T,(g)=T,(/). Since g(0)—

T (/N0 =¢, (fN0)—e=1—¢. O0&€E(g) and g& A4, In addition.
lig —fi=]h|=¢ Hence, f is not in the interior of 4,, and so A, has an
empty interior. By the Baire category theorem, ~ # (J . and the proof
of Theorem 1 is complete.

The proof of Theorem | shows the existence of a set of functions of second
category in - for which Poreda's question remains unanswered. In contrast
to this. we have:

n 1]

THEOREM 2. B is of first category in C(I).

Proof. For L=1.2.., let B, ={/eC:M,(/HKL. n=0.1..}. By
Theorem 2 in |1], M,(/) is a lower semicontinuous function of f for each n.
and B, is closed. Let f€ B,. For each n, select a polynomial g, of exact
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degree 5 + 1 such that | /—g,[|~0 as n- o0. By Theorem2 in |[7].
lim, , M,(g,) = oo. and thus every neighborhood of / contains a function
not in B,. B, has an empty iaterior, and Theorem 2 is proven.

3. INTERPOLATORY ESTIMATES FOR M (/)

For fixed n. let S, ={p € [I:| p| = 1}|. The following characterization of
+.(f) is due to Bartelt and McLaughlin (see [1]| and Theorem 5 in |3]). If
SECMN\I,. then

7o) =min max [sgne,(/)(x)] p(x). (3.1)

PES, XEE (/)

Many of the analyses of the asymptotic behavior of M (/') rely on an inter-
polatory characterization of M,(f) (see |7, 8, 13]). Let

X < X < < Xy

be an alternant for e, (f). For j =0....n + 1, let g, be the unique polynomial
in 1, satisfying g,(x;) =sgne,(/)(x;). i=0...n+1, i+ /. Cline [4] has
shown that

Kn - Kn(x() “““ '\‘/1 - l): 0 max | qu‘ ‘32)

. jeond ’

is a suitable strong unicity constant. that is. K, > M, (f). Henry and Roulier
[8] proved that K, =M (f) if |E,(f)=n+ 2. As a result, the analyses of
[7.8.13] either impose the condition or conditions which imply
|E (/) = 1+ 2. Unfortunately. when |E (/)| > n + 2. we only have

‘Mn(f) g min K,p (33)

where the minimum in (3.3) is taken over all alternants for e,(/) An
example which appears in |2] shows that the inequality in (3.3) can be strict
when |E, (/) >n+ 2.

In this section, we obtain a lower estimate for M, (/") when :E, (/) =2 n + 2
and T,() =T, (/)

Lemma 1. [f f€ C(D\I,. then
M. (fy=maxil|pll: p€ I,.o(x) plx)< | for x € E (). (3.4)

where a(x) = sgn e, (/)x).

Proof. The assertion on p. 64 of Rice [12] (note the misprint: = should
be >») implies that the maximum in (3.4) exists. Let g €& [I, satisfy
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0(x)q() < | for x € E,(f) and [l¢]|=max{| p|l: p € 1T, 0(x) p(x) < | for
x€ E,(f)}. Then q/| q|| has norm 1 and by (3.1)

M(f) " =7) < max o(x) g(x)/ligll < 1/lq]

and thus |lg|| <M,(/). By (3.1) again select p € S, such that M, (f) ' =
7)) =max,c, . 0o(x) p(x). Then o(x p(x M (f)<1 for x€ E,(/). and
M ( f)_||pM,,(f)|| < llg|- Hence. ||g|l =M {/), and Lemma 1 is proven.

Suppose that T,(f)# T,, (/). Then e,,(f) can demonstrate no more than
n+ 2 points of alternation in E, (/). We may decompose E, (/) into n + 2
nonempty subsets

E' E'...E"! (3.5)

satisfying (i) E' is compact, (=0...n+ 1. (ii) max E'<min E'" ",
i =0,...n (iii) o(x)=sgne,(f)(x) is constant over E', i=0....n + 1, and
(v) sgn e, (/)(x} |y = —sgn e, (f)(X)|pi 1, i =0, n.

If|E,(f)=n+ 2, then each £ is a singleton, and the g; in (3.2) are well
defined. If |E,(f)| > n + 2. we demonstrate the existence of analogous inter-
polating polynomials.

LEMMA 2. Suppose that T,(f)# T, (/). E'. i=0..n+1. are
given by (3.5), and o(x) is defined in (iii) above. Then for j=0..,n+ 1,
there is a q,; € I, and there are points y,; € E'. i = 1...n+ 1, i+ j. such
that o(x)q,{x)< 1 for x€E(f) and o( Vi) @ai 1',,,)— I, i=0..n4+ 1.
i # j. Moreover, each q,; is unique in the sense that q,; is the only polynomial
in I, such that o(x)q,(x)< | for x€ E (f) and a(x) q,/(x) =1 for some
XEE i=0..,n0+1,i+#]

Proof. In this proof we suppress the subscripts on g, and y!,. This result
depends not on f but on E,(f) and its decomposition (3.5).

We first consider the case in which E, (/) is finite and induct on £ (/).
IWIE,(f)=n+ 2 then we can write E' = {x,}, i = 0,... n + 1. For fixed j. let
v .Ax, i=0...n+1, i#j, and let g be the polynomial in /I, satisfying
glx;) =ofx;), i=0.. n+ 1, i#/ Then o(x;)q(x;)<0. for otherwise g
would have n + | zeros. Thus the conclusion of Lemma 2 holds if |E£,(/ )=
n+ 2

Assume that the conclusion of Lemma 2 holds whenever [E, (f)=m >
n+4 2 Let [Ef)=m+ 1. and fix j, 0<j<n+ 1. If |E'| > 2, delete one
point z from £’ and apply the induction hypothesis to obtain ¢ € I, and
VY EE. i=0...n+ L i#]. such that o(x)g(x)< | for x€ E,(f)\iz} and
o(r)g(y)y=1.i=0...n+ 1. i#j. As before, 0(z) g(z) < 0. and the result
holds. Suppose |E/| = 1. Then for some k, O A< n+ 1. k#j. |[EX 22,
Declete one point z from E* and apply the induction hypothesis 10 obtain
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qeEM,. yYEE. i=0u., n+ 1, i#k i#j and p* € E*\|z} such that
alx)g(x)< 1 for x€E (/N |z} and o(y)g(y)=1.i=0..n+ 1, i £/ If
o(z) g(z) < I, then the result holds. Now suppose that a(z) ¢(z) > 1. Delete
1% from E* and apply the induction h)pothesis again to obtain g€ I1,.
FTEEi=0m. nt . i+rk i#j and i*€ E”{ *1 such that o(x) g(x) < |
for v€E,(S\{2*) and o(7) G(57") =1, i =0 n + L. I;éj We show that
a(1*)g(1r*) < 1. Suppose a(1*)G(1*) > 1. Then o(z)|g(z (z)] >0 and
(M) g(y*) —g(y*)] < 0. Since 6(z) =0(1*). ¢ — has a zero between =
and »*. Similarly. ¢ — ¢ has a zero between 1’ and i (possibly inclusive).
P=0u.n+ li#hi ;tj Thus g — q has n + | zeros and must vanish iden-
tically. So ¢ =G and a(3") g(1*) = o(v*) g( +*) < 1. Thus the conclusion of
Lemma 2 holds for [ £,(/) finite.
Now suppose [ £,(/) is infinite.
Since each E' is compact, we may select n + 2 sequences (K}, .
i = 0. n+ 1. of nonempty. finite sets such that £, ¢ £’ and

d(E\. E'Y= sup inf |x —1[ >0

vell xel!

ash »o00.i=0...n+ 1 Fixj 0<j<n+ |. Foreach A. we obtain g, € /1,
and v €L i=00.. nt 1, i# ). such that a(x)g,(x)< | for xEE, =

UV E and o(3)qyi)=1. i=0...n+ 1. i#j Since each E' is
compact. we may pass to a subsequence and relabel so that 1} —» ' € E' as
k voo. i=0... n-+ 1, i#j By Lemma3 in |9]. the g, are uniformly
bounded, and thus another relabeling allows us to assume that g, - g € /1,
uniformly on /7 as k - oo0. For xEE (/). say xE€ E'. we may find a
sequence |x,!, ,. where each x, €El and x, »x as k- oo. Thus
o(x)q(x)=1lim, ., o(x,) qlx,)< 1. Also. o(y') gy =lim, , o(y})-
gi(yi)=1.i=0... n + 1. i#j. Thus the existence of the g,, and the 1/, is
demonstrated. The proof of the uniqueness of the g, is the same as part of
the induction step in the first case (that in showing § = ¢). and we omit this
detail.

THEOREM 3. Suppose that [€ C(I\I1, and that T (/)= 1, (/). Let
E'. i=0...n+ 1. be the decomposition of E (f) given in (3.5). and let g,;.
Jj=0.... n+ L. be the unigue polvnomials given in Lemma 2. Then

M”(f) > e max \ qn/”

Proof. The lower estimate (3.6) follows directly from the inequality
alx)q,{x)< 1 for x € E,(f) and Lemma 1.

An example can easily be constructed for which the inequality in (3.6) is
strict.
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4. CONDITIONS ON | E (/)]

For f€ C(I\I1, let {n,}7_, be the strictly increasing sequence of
nonnegative integers whose range contains precisely those n# for which
TAfY#=T,. ,(f) For each k, let

EE' . E" 4.1

be the decomposition of £, (/') given by (3.5) with n = n,.

TueoreMm 4. Let f& C(O\IT and let |n.}; | be as described above. If
for infinitely many k, at most two of the sets E', i =0,... n, + 1. contain
more than one point, then f& B.

Proof. By relabeling we may assume that at most two of the £’ contain
more than one point for all k=1, 2.... For each j, 0</j<n, + 1, let the
polynomials g,; and the points 1;/ i=0... n,+ 1. i/ be asin Lemma 2.
For convenience, let y,;' =a and y}'*=b. It is possible that y,,' =1}, or

g n4l
r A_/ 1A/

We first assert that, after extracting a subsequence and relabeling, for each
k there exists j,. 0<j,<n,+ 1. and a polynomial p, € /l, such that

ipk(_l'i,k)i LLi=0.,n,+1, i#j.and
11m max | pu(x} = {4.2)
k—r ved

where J, = [ ¥ ' 0]

For each k. let 4, and v, be such that |[E*¢|> 1 and |[E"*| > | and |E'| =
i=0.., n,+ 1. i#y, i#+v,. For fixed k. we can find a polynomial
P, €11, such that P (r, )| =1.i=0...m + 1 i#uy,.and

2
HPkH>7log(ﬂk- 1)—c. (4.3)

where ¢ is an absolute constant. The polynomial P, is obtained by removing
absolute value signs and inserting appropriate factors in the terms of the
Lebesgue function corresponding to the nodes _vj;.“k. =0, 1+ 1 i#u,.
Inequality (4.3) then follows from the results of Erdds |6]. Thus
lim,..,, |[2,] = oo

If max{|P,(x)|: x € E“*} is unbounded, we relabel further so that lim, _,
max{| P, (x)]: x € E**} = co. In this case. we let j, =u, and p, = P,.

Suppose that max{|P(x)]: x € E“4} <A for all k& where 4 >1. If
max{| P, (x)|: x € E"*} is unbounded, then a relabeling allows us to assume
that lim,,, max{|P,(x)}:x € E"*} = c0. Since yj, =, for i=*v, and
i # p. we see that [P (v, ) <A for i =0.... ng + 1, 7 # v, In this case, we
let j, = v, and p, =P, /A.
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Finally suppose that [P, (x)| < B for all x € E, (/) and k = 1. 2..... where
B > I. For each £, select x, € I such that | P(x,)| = | P,|. Since 3/ ' € £/
and v, 1, € EL Vil < u” for j=0.... n,+ | and so

n-l

= U b o)

J 0

In this case, we select j, so that x, € [y} . *jj,: '| and let p, = P,/B. The
first assertion is now established.

Assume now that, after relabeling. j, and p, € I, have been chosen for
each k so that (4.2) and that above (4.2) hold. For i =0,...n, + L, i #j,. let
{,; be the polynomial in /7, such that /,( 1,\/A) =1 and /k,( m,‘,k)—O J=0...
n+ Lj#i.j#j,. Fori —O ..... ny + 1,1 # j,. the polynomials o(yy; ) /,(x)
have the same sign on the interval 1nt(J,). Now select x, €J, such that
[ p(x,)l = max,,, | p(x)|. Then using the Lagrange interpolation formula. we
have

Myt ny il

POV AT IR ER B YEY
:’#/(:. itx.f(j.
n,‘+1
= ’ - 0(‘/\“) 14 () “h,k X < M,u(f)
L

by Theorem 3. It now follows that lim,_, M, (/)= co and /& B.

The following corollary is a special case of Theorem 4 with more concrete
conditions and follows at once.

CoroOLLARY L. Let f€ C(D\I. If 1E (/) < n+ 4 for infinitely many n.
then f& B.

Corollary | extends Theorem 4 in |13] and now reduces the resolution of
Poreda’s problem to considering those f& C(I) such that |E (/) > n + 4 for
all but finitely many #.

In [13] it was observed that if £ ! + 0 in the open interval (a, b) for
infinitely many n, then [f& B because such a function satisfies
VE (N =n+2.

CoroLLARY 2. Let f€ CU)YNC (a,b). If £ vanishes at most five
times in (a, b) for infinitely many n, then f& B.

Proof. Let n be such that """ " vanishes at most five times in (a. b). Let
m be the largest nonnegative integer such that 7,,(/) = 7,(/). Then T (/) #
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T,..(f)and let E°....E™*' be the decomposition of E, (/) given by (3.5).
We show that at most two of the sets E', i =0,..., m + 1, contain more than
one point. If E' = {x}, then e, (/) (x) =0 unless x is a or b. If {x, y} < E",
then e,(f) (x)=e,(f) {¥)=0 and e,(f) (z)=0 for some z between x
and y unless x or y is @ or b. If more than two of the sets E' contain more
than one point, then e, (/) must have at least m + 6 zeros in (a.b). By
Rolle’s Theorem [ " =¢, (/)" " must have at least m + 6 —n zeros in
(a,b). Since m > n, /" would have at least six zeros in {a, b) which is a
contradiction.

5. CONDITIONS ON THE DISTRIBUTION OF £ (/)

For convenience in this section, let [= |0, z], P, =span {l, cos x...,
cos nxf, and P={), ,P,. Let f&€ C|O, n|\P. Since /& P, there is a strictly
increasing sequence {n,};_, of nonnegative integers whose range consists
precisely of those n for which T,(f)+# T, , (/). Here T (/) denotes the best
uniform approximation to f from P,. As in (3.5) we decompose £, (/) =

x € (0. 7]: e, (/)00 = lleg, (/)1 where e, (/) = f— T, (f) into the subsets
E'.E'...E™* In order to describe the distribution of E, (f) in |0.7]. let

«;=min E'. f;=max E', i =0..., n, + 1, and let
4, =max{f; —a;i=0.., n + 1}

and

5,,A =maxfa;in—f, 10, —f 0= Lo

Then 4, is the largest diameter of the sets E[’. and o, is the diameter of the
largest interval in |0, 7| which contains one £’ but no other points in E (/).
Observe that 4, <4, . We establish conditions on 4, and §, which ensure
that f& B.

THeorem 5. [fliminf, ,, n, 4, =0, then f& B.

Proof. Let S ={p&P,:|pl=1}. Then by (3.1) applied to
trigonometric polynomials,

Pa(f)=min max [sgne, (/)x)] plx). (5.1)

pPES, xel:',,kl_
By a remark of Henry and Roulier |8]

K“AI =min max 1 |sgn enk(f)(al.)l pla;). (5.2)

PES, O0<ign,+
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where K, =K, (¢y....a, ,,) is given by (3.2) using trigonometric

polynomials. Select g € S, such that

1
K,'= max [sgne, (/Na)|qla,)

Geiconm t1

and select 1 € E,,A(f) such that

[sene, ()()]g(y) = max [sgne, (/)x)]gv).
veb, (N

Now select j such that y € E’. Then sgne, (/)(1)=sgne, (/)«,) and

[sgne, (/U] q(y)-|sgne, (/Na))|qla;)
:\q(y)fq(a,')ii qUEN ¥ o smd,, (3-3)

for some ¢ between «, and y, where the last inequality follows from
Bernstein’s inequality [4. p. 91|. Thus by (5.1). (5.2}, and (5.3)

IS max fsen e, ()00 gl = [sen e, (N gt

g Isgn e"‘(f)((l,-)] Q(al) + nAAnA

f— 4 l Py
= Kru. + nALJM

By Theorem 2 in [13]. K, ' -0 as k -~ oc. and by hypothesis 1,4, 0 as
r— oo for a subsequence {n.; of imt. Thus 3, (f) 0 as v oo,
WML ()T, is unbounded, and /€ B.

THEOREM 6. [flimsup, ., n,0, = oo. then & B.

Prog/.  Assume without loss of generality that lim, ,, n,0, = o. The
proof is given for 4, =a;, —f5; | since the case 4, =«, and 6, =n—f,,
are similar. Let ¢ = /)’,- +«; ,)/2. Define h € C|0. ] by H(0)=h(f;, )=
ha; )= him) = 0. h(c) = —~sgne, (/). and linear in between these points.
Then h satisfies a Lipschitz condition with constant 4 = Zé,u" By Jackson's
Theorem [4, p. 143] there is a polynomial p€ P, such that |4 pll <
mA/2n + 1)y =n/(n, + 1)0, . If i, =n/(n, +1)6, . then lim, , 7, =0. For
k sufficiently large, | p|l = ] 7, =1 — 17, > 0. For XEE, (SINE.

Isgne, (/)(xX)] plx) < plx)] = [A(x) -~ plx)] < 7,
Since sgn A(x) = —sgn e, (/){x). for x € E ¢ (f; |.u; ) we have

Isgn e, (/)x)] p(x) < [sen e, (/)] (plx) = A(x))

<fplx) — h(X)l <1y



STRONG UNICITY CONSTANTS 79

By (5.1)

P )< max [sgne,(f)(x)] p(x)/]ipl

XEE, (f)

<o /lpll <o /(1 — 1)

Thus M, (/) > (1 — t,)/7, which tends to oo as k —» co0. and f'€ B.
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